
Technische Universität München

Distributed Multimodal Information Processing

Group

Prof. Dr. Matthias Kranz

Diplomarbeit

System zur Unterstützung effizienterer
Seminarraumnutzung

Author: Tobias Knothe
Matriculation Number:
Address:

Advisor: Andreas Möller
Begin: 01.04.2011
End: 30.09.2011

Abstract

In large organizations like offices, universities or generally shared real estate a common
administrative problem is that of physical resource scheduling. Often resources like meet-
ing rooms are too plentiful to be managed by one central authority and so the process of
acquiring a room is inconsistent, complicated and awkward. This thesis attempts to pro-
vide a scalable solution using the ubiquitous computing paradigm to handle administrative
tasks related to resource management in a consistent and automated fashion. Innovative
features using state-of-the-art technologies provide security, ease of use and added value
to both end-users and resource administrators. The practical part of this thesis is a proto-
type implementation of the system encompassing a backend server infrastructure, portable
terminal clients bound to the room resources and embedded hardware device directly in-
teracting physically with the environment.

2

Contents

Contents 3

1 Introduction 7
1.1 Motivation . 7
1.2 Outline . 7

2 Related work 8
2.1 Ubiquitous computing . 8

2.1.1 Terminology . 8
2.1.2 Usability . 8
2.1.3 Interactivity . 9
2.1.4 Future . 9

3 User study 10
3.1 User interviews . 10
3.2 Online survey . 11

3.2.1 Outcome . 16

4 WallClient displays 18
4.1 Overview . 18
4.2 Hardware platform . 18

4.2.1 Hardware requirements . 18
4.2.2 Android platform . 19
4.2.3 Connectivity . 19
4.2.4 Operating-system lockdown . 19
4.2.5 Software deployment . 20
4.2.6 Anti-theft measures . 20
4.2.7 Building safety requirements . 20

4.3 Design principles . 20
4.3.1 Simplicity, Clarity, Flexibility . 21
4.3.2 Visibility . 21
4.3.3 Conceptual Model . 22
4.3.4 Feedback . 22
4.3.5 Metaphoric Design . 23

3

CONTENTS 4

4.4 User interface implementation . 23
4.4.1 Navigation . 24
4.4.2 Native domain vs. code-on-demand domain 24
4.4.3 User Interface (UI) overview . 26
4.4.4 Now View . 26
4.4.5 Schedule View . 27
4.4.6 Use Room view . 29
4.4.7 Reservation view . 30
4.4.8 Authentication view . 31

4.5 Authentication service . 31
4.5.1 Goals . 31
4.5.2 Concept . 34
4.5.3 Sequence . 34

4.6 Security . 37
4.6.1 Implementation . 37
4.6.2 Mechanism . 40
4.6.3 Client authentification . 40

5 Backend service 42
5.1 Goals . 42
5.2 Architecture considerations . 42

5.2.1 System Architecture Overview . 43
5.2.2 Service oriented architecture (SOA) 43
5.2.3 Representational State Transfer (REST) 44

5.3 Summary . 46
5.4 Platform considerations . 46

5.4.1 Servlet container . 46
5.4.2 Security . 47
5.4.3 Database management system . 47
5.4.4 Server host . 47

5.5 Services offered . 48
5.5.1 Administrative resources . 48
5.5.2 Room management resources . 48
5.5.3 WallClient resources . 49
5.5.4 AuthService resources . 49
5.5.5 Barcode resources . 49
5.5.6 Crond resources . 49

5.6 Implementation details . 50
5.6.1 MVC and Servlets . 50
5.6.2 Database abstraction layer . 50
5.6.3 Database schema . 51

5.7 Interface to supporting systems . 51
5.7.1 Interface to TUMOnline . 53

CONTENTS 5

6 Interacting with the environment 56
6.1 Introduction . 56
6.2 Requirements . 56
6.3 RoomControl module . 57

6.3.1 Overview . 57
6.3.2 Controller microprocessor . 57
6.3.3 Controller IO and PSU board . 59
6.3.4 Status LEDs . 63
6.3.5 Output channel . 63
6.3.6 Input channel . 63
6.3.7 Network connectivity . 64

6.4 RoomControl Software . 64
6.4.1 Initialization . 64
6.4.2 Connection handshake . 66
6.4.3 Command Message . 67

6.5 Security . 67
6.5.1 Network security . 68
6.5.2 Software security . 68
6.5.3 Physical security . 69
6.5.4 Considerations for productive use 70

6.6 Actuators and sensors . 70
6.6.1 Lock actuator with visual feedback 70
6.6.2 Door state sensor . 71

6.7 Installation . 71
6.8 Future considerations . 71

6.8.1 Scaling . 71
6.8.2 Audit . 73
6.8.3 Robot Operating System . 73

7 Conclusion 74
7.1 Summary . 74
7.2 Outlook . 74

7.2.1 Productive use . 74
7.2.2 Multiplication . 75

A Core backend service resources 76

B RoomControl BOM 80

C Arduino UNO schematics 82

D RoomControl message commands 84

E Abbreviations 86

CONTENTS 6

List of Figures 89

List of Tables 91

Bibliography 92

Chapter 1

Introduction

1.1 Motivation

With the rapid expansion of faculties and the quickly increasing number of students study-
ing at the Technische Universität München (TUM) around 2010, a major problem for the
university’s administration became that of scheduling rooms and lecture halls. The main
campus site could not expand any further and plans for moving to the new site would take
years. Therefore it quickly became apparent that the existing, decentrally managed in-
frastructure needed to be used more efficiently. First thoughts on developing an assistance
system which employs an ubiquitous computing model were formed by the Distributed
Multimodal Information Processing Group at the TUM. This thesis attempts to provide
a conceptualization and specification of such a system in this written part, along with a
description of the first working implementation, which was implemented in the second,
practical part. This implementation, called the TUManage system, is currently being de-
ployed in a productive test-phase to manage rooms in one building of TUM’s Munich inner
city campus.

1.2 Outline

In the next chapter a brief look is taken at related work upon which this thesis is built.
Chapter 3 describes the user studies done to profile the system’s target audience and secify
user requirements. Chapter 4 deals with the main part of the actual system, the front-end
consoles with which the user directly interacts. A brief look at usability issues and design
is taken before the platform implementation is explored, whereafter a UI walk-through is
taken. In the next chapter, chapter 5, the design and implementation of the supporting
backend server infrastructure is examined. Chapter 6 deals with how the system interacts
with the user’s physical environment. Finally, in chapter 7 a conclusion and outlook is
presented.

7

Chapter 2

Related work

TUManage’s usability and architecture design leans on current research in the field of
ubiquitous and pervasive computing. An introduction to ubiquitous computing is provided
in the section below.

2.1 Ubiquitous computing

2.1.1 Terminology

The term ”ubiquitous computing” is a human-computer interaction model used to describe
the third, present era in modern computing [20]. The first era was defined by the idea of
the mainframe server where computing time was made available across multiple ”dumb”
terminals. This large computer was often owned by an organization and shared by many
people at the same time. Second, came the era of the Personal Computer (PC) - one
computer owned and used by primarily one person. The ”Third Paradigm”, as Alan Kay
of Apple calls it [29], is termed ubiquitous computing, or the age of ”calm technology” [30]
(when technology recedes into the background of our lives).

2.1.2 Usability

As opposed to the PC, one person now interacts with a multitude of different computers and
systems, seamlessly integrated into everyday objects and our everyday life. These small
networked portable devices can take on the form of smartphones, household appliances
with embedded computers (e.g. television sets) or other forms of embedded devices. The
term Internet of Things is used in conjunction with these devices because of their network
connectivity and pervasive presence [22]. The fact that many of these highly integrated
devices can be connected together logically to form a complex system present in many parts
of our everyday environment opens up new opportunities for ”machines that fit the human
environment instead of forcing humans to enter theirs” [31]. For the user, interaction with

8

Chapter 2 Related work 9

the systems becomes more and more transparent, the user has no knowledge of the presence
or complexity of system components running in the background to complete the task at
hand. He can engage with the system in an unobtrusive and natural way while being in
contact with many parts of the system at the same time.

The devices should recede into the background of the user’s perception, with all complexity
being abstracted and hidden from the user. Users typically engage with ubiquitous systems
spontaneously and not want to invest time to learn operation. As the systems are embedded
into everyday objects most users are in a different mindset when interacting with them as
when they were, say, using a PC, where an average user is used to adapting to the system.
Here, the system needs to adapt to the user (calm technology [30]), and stay out of the
user’s way. Calmness, as coined in [30], is a new challenge for system usability designers.
Systems are no longer used by a small set of experts, they are used by everyday users in
everyday situations. PCs focus more on excitement of interaction. Calm systems should
rather be less noticed.

2.1.3 Interactivity

Input data is gathered from the user and the environment by means of numerous embedded
and mostly unnoticed sensors. This makes the system context-aware, it can change its
behavior depending on numerous factors like e.g. the environment or location it is being
used in, the type of user using it or the proximity of other devices part of the system.
Context awareness can span across multiple levels and components of the system. Output
can be actions on the environment using actuators (e.g. opening a door). Information can
be presented to a user in a form best matching his conceptual model of the system (e.g.
turning a door handle green if the door is unlocked, red if it is locked).

2.1.4 Future

With embedded devices becoming more and more powerful and affordable, ubiquitous com-
puting can ever easily be integrated into larger-scale everyday systems. The explosion in
smartphone sales in the recent years alone has brought powerful hand held devices with
flexible computing platforms to the consumer market. Also, on the sensor/actuator side an
ever increasing number of intelligent embedded devices with excellent networking capabil-
ities have become available. Wireless Sensor Network (WSN)s and pervasive systems are
becoming a trend and have been recognized by numerous commercial platform developers,
as can be seen with e.g. the many ZigBee implementations or Google’s Android@Home
project [18].

Chapter 3

User study

Before designing the new room management system a user study was conducted, consisting
of both user interviews held in person and an online survey with anonymous participants.
From these investigations a set of key requirements were distilled as well as a profile about
the system’s target audience established.

3.1 User interviews

The first user interviews were held in person in order to get a selected but very detailed
response. The members of both the TUM staff plus administration and the students
were very clear to highlight the currently problematic room situation at TUM’s inner-city
campus. For one, rooms are very limited and there are little common areas available for
collaboration, while on the other hand smaller lecture halls and seminar rooms remain
unused for long periods of time. Different rooms are managed by different administrative
entities within TUM so even if a possibly free room would be available, users do not know
if they may use it or whom to ask. Often rooms are locked, with only a very small subset of
staff having a key. Other potential users would need to fetch the key at some hard to find
or unknown office. Room administrators expressed concern about moving room ownership
to a central administration as they fear they themselves would be obstructed from using
the room efficiently. This could take on the form of double-bookings or the room being
inaccessible for spontaneous ad-hoc meetings due to the high overhead of booking the room
and obtaining the key from the central room administration.

From these user interviews it was concluded that a homogeneous and simple means of
managing rooms needed to be introduced. The same procedures for using rooms should
be valid across campus in order to avoid confusing users. The problem of high overhead to
obtain a room has to be addressed. Reserving a room should be a quick and easy procedure
and instant feedback must be given, instead of the usual one or two days waiting time for
the room administrator to reply to a user’s email inquiry.

Some students interviewed also expressed their dissatisfaction with the paper room sched-

10

Chapter 3 User study 11

Figure 3.1: Participant role at the TUM

ules pasted next to the lecture hall doors. In theory they should show the event timetable
for the room, but the static weekly schedule does change sometimes, making the paper
sign confusing. The paper sign is also said to be printed too small.

3.2 Online survey

Next, an online survey was conducted online using a popular 3rd-party web-based survey
tool [8]. The goal of this survey was to get a broad overview of possible users at TUM and
highlight possibilities for assisting with everyday tasks in the campus ecosystem. A profile
of the participants’ use of mobile Internet, smartphone use and use of web platform was
made in order to best cater for their needs while designing the room management system.
Questions with regards to room use at the TUM campus were also asked as well as some
questions profiling the willingness to adapt new technologies for everyday tasks. Here is a
selection of interesting results from the survey.

A total of 93 participants completed the survey. About 65% were TUM students and 21%
TUM staff (fig. 3.1).

Over 75% of participants has access to the Internet using their mobile phone (fig. 3.2).

Chapter 3 User study 12

Figure 3.2: Mobile phone Internet usage

Users of Internet-enabled mobile phones use their mobile’s connectivity mostly for email,
followed by Web 2.0 networks, news and navigation (fig. 3.3). Many users would like to
use it for navigation within buildings and for mobile payment, but only within the TUM
campus. A surprisingly high number of participants (35%) would like to use thier mobile
phone to control everyday items like their TV (or coffee machine). While a large part of
the target audience has an Internet-enabled mobile phone this percentage does not cover
the entire target audience.

When asked about online service usage at the TUM the most used service was the canteen’s
online lunch menu, followed by the use of the TUM Internet portal used by students
and staff for organizational tasks like registering for courses, managing course notes and
checking one’s course schedule (fig. 3.4). Room reservation services scored very low, not
surprising as there was no official service provided at the time the survey was held.

The response for the question about which new online services at TUM would be desired
was mixed (fig. 3.5). It does seem, however, that a mobile room finder and navigator are
the most desired services. Interestingly, the proposal of an online room reservation system
has the highest neutral response. Users do not explicitly wish for the system but seem
open for its use. (It should be noted that at this part of the survey there was no mention
yet of the possibility of using rooms for personal collaboration or studying by students.)

The last set of questions were about room use at the TUM. There was moderate agreement

Chapter 3 User study 13

Figure 3.3: Mobile phone services usage

Figure 3.4: Current TUM online services usage

Chapter 3 User study 14

Figure 3.5: Desired TUM online services usage

that rooms are easy to find at TUM and strong agreement that the TUM RoomFinder
web service is a valuable tool for finding unknown rooms (fig. 3.6). Moderately strong dis-
agreement was observed for the statement that there are enough rooms available for ad-hoc
collaboration, meetings or studying. This confirms the statements about the problematic
rooms situation encountered during the personal interviews.

Asked in more detail about the reason for this dissatisfaction the number one answer was
that rooms are not free when needed (fig. 3.7). This is interesting because there are,
according to the campus administration, many free rooms, but users do not know about
them. The next prevalent answers were, apart from ”the rooms are too uncomfortable”,
that ”i don’t want to be in anyone’s way” and ”i didn’t know i was allowed to use the
room”. Also interesting are the relatively common answers ”the rooms are often locked”
and ”i wish to work without being disturbed”. The answers to the survey highlight some
important issues the new room management system must address. Free rooms should be
advertised to users and they must be sure that it is allowed for them to use the room.
While using a room, users wish to not be disturbed and be left assured that they can use
the room without interruption for a certain amount of time. It is therefore proposed to
implement the policy that rooms have to always be reserved, even if they are to be used
immediately. Once a user has a reservation in his name he can firstly be assured that he
may use the room. Secondly he will know that he can use the room without interruption,
knowing at what time his reservation ends and the next reservation begins.

Chapter 3 User study 15

Figure 3.6: Satisfaction levels about room situation

Chapter 3 User study 16

Figure 3.7: Reasons for not using rooms

3.2.1 Outcome

Some key requirements for the new room management system could be defined with the
help of the interviews and the survey. The new system should,

• Assist with managing the numerous rooms at TUM belonging to different adminis-
trative domains.

• Enable rooms to be used more efficiently by offering them to any user, from any
administrative domain, when the room would otherwise remain unused.

• Cut the time and effort required by users to find and use a suitable room to fit their
needs.

• Keep a record of the identity of users reserving a room, in case of abuse or theft.

• Implement an automatic access control mechanism allowing users who have reserved
the room to enter it immediately, replacing the current physical keys which are cum-
bersome to administer.

• Have a consistent look-and-feel across the entire campus and require no training for
its users.

• Allow users to quickly and reliably verify a room’s schedule or book it. No stale data

Chapter 3 User study 17

or high latency can be tolerated.

• Accidental double-bookings due to simultaneous booking requests need to be avoided,
while still keeping reservation overhead at an absolute minimum.

Following these key requirements a room management system was designed and its name,
TUManage, coined. It consists of three main parts, namely terminals called WallClients
mounted next to rooms’ doors, replacing the traditional door signs found at TUM. These
will be the main point of user interaction and provide a familiar and homogenenous user
experience at all room terminals throughout campus. The second part are small embedded
devices called RoomControl which interact with the room environment, in this case the
room’s door and lock. TUManage can therefore unlock doors automatically and sense the
state of doors and locks, automating the process of fetching keys from room administrators.
The third part is a server infrastructure connecting all the WallClients and RoomControls
together. Here the room management is handled centrally, with the opportunity to inte-
grate with existing systems like the TUM’s university management system TUMonline.

Chapter 4

WallClient displays

One of the components of the TUManage system is the smart door sign. This chapter
deals with its design and implementation. A prototype implementation was installed at
one of TUM’s lecture rooms for demonstration and evaluation purposes.

4.1 Overview

Direct user-interaction with the TUManage system is usually primarily done via a dynamic
door sign device called the WallClient. It is placed next to each of the room’s main doors,
replacing the traditional door signs displaying the room’s name and number. Interactivity
with the sign is achieved using a touch-sensitive display, allowing the users to navigate
around the custom Graphical User Interface (GUI) (WallClientUI) in an intuitive and
familiar way. The second means of interactivity is provided by the system’s backend
services which can respond to environmental (e.g. the door is unlocked) or logic events
(e.g. a room reservation has taken place).

4.2 Hardware platform

4.2.1 Hardware requirements

Requirements for the hardware hosting the WallClientUI are simple. The device should
be mounted in an accessible location next to the rooms’ doors. It should be unobtrusive
and easy to use, therefore a touch-screen display is required. The display should be well-
readable even when it is mounted on a wall while users stand in front of it. The device
should be easy to install, some installation locations have no means of routing Local Area
Network (LAN) cabling to the device. Power cabling, is often too thick to install easily
or this is not possible due to safety regulations, even though power is usually available
nearby (e.g. from plug sockets, light switches or light fittings). Therefore low-voltage

18

Chapter 4 WallClient displays 19

power supply cabling would be advantageous as it can be much thinner and is not subject
to strict building safety regulations.

4.2.2 Android platform

The Android platform was chosen as best suited platform for the WallClient devices. With
the availability of Android tablet devices on the mass-market hardware can be obtained
quite cheaply. Newer Android tablets offer impressive technical specifications like 3D graph-
ics accelerators and high-performance processors in a small and simple form-factor. The
Android operating system is well-suited to be adapted for WallClient devices as it is open-
source, allowing modifications and customizations to be performed easily. Even with-
out modifications the framework offers many useful features (like the intent framework,
Extensible Markup Language (XML)-based layout, package deployment) and a powerful
Integrated Development Environment (IDE) which make the platform very well suited for
rapid prototyping.

4.2.3 Connectivity

Because the WallClients are explicitly mounted next to rooms’ doors it could be a challenge
to supply the device with power and network connectivity. The Android devices are well
suited for the task for two reasons. Firstly, their network access is handled via a built
in Wireless LAN (WLAN) chipset, eliminating all need for running dedicated network
cabling. The devices connect to the building WLAN infrastructure which is omnipresent
on-site. Secondly, the devices do not require 220V mains power. They are supplied with
5V-19V DC, depending on make and model. Power feeds can therefore be safe low-voltage
cables which are easy to run both practically and legally. The 220V power supply can be
mounted out of reach and sight at a convenient location.

4.2.4 Operating-system lockdown

In order to prevent malicious users from manipulating the device software or abusing the
system, measures were taken to lock the user into the WallClient software. Access to the
underlying Android operating system is not possible as all elements of the Android user-
interface leading away from the WallClient application are either removed or disabled.
Also, automatic sleep or screen lock are disabled programmatically so the device is kept
awake and the display on at all times. Should the WallClient application for some reason
be terminated, a service responds to this condition and will restart it.

Chapter 4 WallClient displays 20

4.2.5 Software deployment

Once many WallClient devices are in operation a means of automatic deployment and de-
vice monitoring is essential for uninterrupted and efficient operation. While the WallClient
application is designed to be low-maintenance, with large parts of the system’s complexity
shifted to the core backend services and using a code-download architectural style for often
changing parts, it is inevitable that maintenance needs to be performed and administrator
intervention is essential. Future versions of the TUManage system could employ a device
management service to report device status to a maintenance service or automatically de-
ploy new/updated software packages over the network. The management service should
run independently of the WallClient application in order for updates to the WallClient
software not to conflict with the management software. Access to system settings like net-
work or display settings would be of advantage. In our prototype system deployment was
carried out manually using the device’s web browser which was navigated to the WallClient
application package hosted at an accessible URL. Settings like the device ID were entered
manually.

4.2.6 Anti-theft measures

Even though the relative cost of an Android tablet device is low compared to other solutions
it can still be an attractive target for petty thieves. Therefore a tamper-proof wall-mount
casing was chosen, making it difficult to remove the device from the wall without generating
much attention. Device movement is detected using its built-in acceleration and magnetic
compass sensors and it will emit an alarm sound if it is moved. Additionally it will send
an alert message to the backend core service with its location for as long as the internal
battery lasts.

4.2.7 Building safety requirements

A safety-support feature added to the WallClient software is that it will display an emer-
gency escape route symbol when the main power is cut, until the power is restored or the
internal battery runs out. The direction to the nearest escape route is shown with the
display backlight on at the highest brightness in order to assist users in the case of an
emergency or power failure. (The corresponding wall-client view is shown in figure 4.1.)

4.3 Design principles

The design of the WallClient UI has its primary focus on simplicity, clarity and flexibility.
The majority of TUManage users will receive little or no training on the operation of

Chapter 4 WallClient displays 21

Figure 4.1: Emergency view (shown in the event of a power failure)

the WallClients. The devices should, as any good ubiquitous computing system (see 2.1),
recede into the background of the user’s perception and ”just magically work”, with all
complexity being abstracted and hidden from the user. Most users will use the system
spontaneously and not want to invest time to learn its operation. As it is embedded into
an everyday object most users are in a different mindset when interacting with it, as when
they were, say, using a PC, where an average user is used to adapting to the system. Here,
the system needs to adapt to the user (calm technology [30]), and stay out of the user’s
way.

This section highlights some of the core principles taken into account while designing the
WallClient UI.

4.3.1 Simplicity, Clarity, Flexibility

These three core values were borrowed from a related ubiquitous system design [21]. Sim-
plicity means that the system should not be over-engineered or over-specialized. clarity is
needed to convey a unfamiliar idea (i.e. the device’s operation). Flexibility is important
for further development and adaptation of the system, e.g. when enhancements are to be
performed, new requirements arise or the environment changes.

4.3.2 Visibility

Merely by looking at the device the user should be able to tell the state of the system and
know his alternatives for action. The navigation bar on the right is kept deliberately simple
and maps the user’s conceptual model of the system (i.e. his impression and expectations).
At all times can the user see all his options, namely to see information about the room
(what is its number? is it in use? who is using it or when is it used next?), see the room’s
schedule and to make a reservation. A good placement and visibility of these controls is
vital. While performing more complex operations, like reserving a room, the user is also
presented visually with a complete overview of the process (see 4.4.7). As he enters the
required information as asked by the system he sees it placed within the context of the
task at hand, via the overview control displaying the completed and still pending steps for
performing the reservation.

Chapter 4 WallClient displays 22

4.3.3 Conceptual Model

The design should provide a good conceptual model for the user, with consistency in the
presentation of operations and results and a coherent, consistent system image [23]. The
user knows, from the fact that the device is hanging next to a door where a door sign
(and in TUM the paper weekly event schedule) usually reside, that the device is used for
displaying information about the room and possibly its events. The user mentally simulates
the operation of the device before even touching it. The UI should adapt to this model and
provide further clues as to the operation by offering affordances, constraints and mappings
[23].

Affordances

Affordance refers to the perceived and actual properties of the thing or device, primarily
the actual properties which determine precisely how the device is to be used. Affordances
provide strong clues to the operation of things. An example of an affordance would be
the touch-screen display. The user knows from previous experience with touch devices
and the virtual buttons displayed on the screen (and the lack of any other controls) that
interactivity with the screen is via touch.

Constraints

Constraints would be the physical space on the screen used by the buttons. The prominent
design of the buttons in respect to the other UI elements suggests that these buttons are
for touching.

Mappings

Mappings are very important with the touch-screen UI as the only ways to convey the
function of a virtual button is using text and position. Therefore care was taken to keep
the navigation buttons on the right present at all times when navigating through the UI.
The user knows his current location within the UI because the corresponding button is
highlighted in the same color as the UI view’s background (see fig. 4.3). If at any time the
user wishes to navigate somewhere else the required buttons are where he would expect
them.

4.3.4 Feedback

The user should receive continuous and full feedback about the results of his actions. Wide
use of a so-called ”spinning wheel” throbber (see fig. 4.2) is made due to the indicator’s

Chapter 4 WallClient displays 23

Figure 4.2: Throbber animation

prominence in typical Web 2.0 applications our target audience is familiar with. Sometimes
(e.g. during high network and/or server load) it is possible for the system to perform slower
than desired and actions take more than the upper bound of 3 seconds to complete. The use
of the animated loading indicator conveys the impression that the task has been understood
by the system and it is busy processing it, while no further interaction is needed.

4.3.5 Metaphoric Design

The cognitive approach chosen, according to [10], is the metaphoric approach. Using
metaphors can be an effective way to communicate an abstract concept or procedure to
users, as long as the metaphor is used accurately. When users are confronted with the
metaphor of, for example, the switch-like graphic together with the lock symbol of the
privacy-control in the reservation view, they use their past experience with switch-like
objects in the real world to instantly know that this is a control which can have two
togglable states. Other examples of metaphors used in the UI are the schedule control
which looks like a timetable and the event progress control which looks like a progress bar
filling up.

4.4 User interface implementation

Implementation of the UI was done using two frameworks and architectural styles, the
native Android domain and the code-on-demand domain. The next section will briefly
deal with the two domains, whereafter the UI is presented in the following sections, view
by view. All views, irrespective of their underlying domain, have a few important key
points in common, the TUM corporate design [9] and the navigation control, the NavBar.
The corporate design is important not only for branding the system in the context of the
customer (in this case the TUM), but also for recognition and assurance for the user.
A new user might notice the TUManage WallClient with the familiar branding of the
building administration and immediately be assured that this is an official and reliable
service with support available in case of difficulties. The branding represents the same
entity the user would contact via other means for the same outcome, namely contacting
the room administration.

Chapter 4 WallClient displays 24

Figure 4.3: NavBar navigation metaphor

4.4.1 Navigation

Special care has been taken to present the user with a clear and consistent base navigation
metaphor. It is present on the screen at all times, in all views, in the same look, feel and
position. It is positioned on the right of the screen and is touch-responsive. The right
side of the screen was chosen because, as a typical user uses his right hand to touch a
control, he will thereby not obstruct view of the screen with his right hand and arm. A
user touches the corresponding button to switch the main display area on the left of the
NavBar to the desired view. While navigating the UI the NavBar adapts its state to show
the current context of the UI. This is achieved by highlighting the corresponding button
with the background color of the view being used on the left, creating the impression that
the button is part of the view in question (even though programmatically it is not). The
other buttons seem to hover on the right side of the screen, ready for the user to select
them to jump to a different view/task. A prototype version of the NavBar can be seen
in figure 4.3, depicted here without tell-tale icons and style, which was added later. The
NavBar is implemented in the native Android domain.

4.4.2 Native domain vs. code-on-demand domain

The user interface is split into two programmatic domains, the native Android domain and
the code-on-demand (JavaScript) domain. Both have exactly the same look-and-feel for
the user, who is unaware of the underlying technologies used to process his requests and
present the UI. The reason for this split is to reap the advantages of both technologies and

Chapter 4 WallClient displays 25

use the implementation which is best for the given situation.

Native Android domain

The advantages of the native Android code domain are higher efficiency and flexibility
during implementation. Full access to the entire Android framework ensures that all func-
tions of the device like the camera and operating system calls possible. Views developed
in this domain (e.g. the Now view, the application’s header and the NavBar) are created
in Android’s XML-based layout language and behavior is coded in a dedicated Java class.
Data is fetched asynchronously (using Android’s AsyncTask class), via a Hypertext Trans-
fer Protocol (HTTP) client implementation, from the TUManage backend service using
RESTful HTTP requests. Parameter data is gathered from UI elements and, if applicable,
local system framework calls. Response data is is returned as a JavaScript Object Nota-
tion (JSON) data structure [4] and is parsed by a JSON parser, whereafter UI elements
are updated with response data and a possibly pending throbber dialog dismissed.

Code-on-demand domain

To handle on-demand code received from the TUManage backend core service an instance
of the Android WebView class is embedded in the WallClient application. It is used to
render Hypertext Markup Language (HTML)5 documents with embedded JavaScript us-
ing the JavaScript engine bundled with Android. When a code-on-demand view is to
be shown the WebView control is initialized into the area left of the NavBar and code
is fetched from the backend via a HTTP request. The HTML document is assembled
on the server using JavaBeans and Java Server Page (JSP) and returned to the Wall-
Client WebView instance which renders it. The familiar WallClientUI look-and-feel is
implemented using custom Cascading Style Sheets (CSS) styles, while the UI behavior is
implemented using the jQueryMobile JavaScript framework [3]. The framework provides
widgets, animations and wrappers for managing multiple sub-views inside a single docu-
ment. Many quirks related to rendering a smooth UI on touch-based devices are handled
by the framework. Lower-level behavior like REST calls to the backend are coded in pure
JavaScript using the jQuery library [2] (not to be confused with jQueryMobile) to abstract
the browser/WebView Application Program Interface (API). For example, jQuery wraps
the browser’s more complex XMLHttpRequest object with a $.ajax() call to perform a
HTTP call to the RESTful backend service to perform requests or fetch query data. Re-
turned JSON data is parsed natively in JavaScript using a safe wrapper library provided
by jQuery. Library functions are also used to traverse the resulting data structure and
update the document’s Document Object Model (DOM), thereby dynamically updating
the UI.

Chapter 4 WallClient displays 26

Client StartClient Start
Register with

backend

Info view

Now view Use Room view

Schedule view

Emergency Exit
Sign View

Power is cut
From any state

Reservation
View

Read configuration
from preferences db

registered

Unlock room

Reservation for
now successful

No reservation

Reservation owner
authenticated

Door opened

Reservation for
later or no reservation

Figure 4.4: High-level state diagram of application state

4.4.3 UI overview

As can already be deduced (hopefully, because that is the design’s intention) by looking at
the NavBar control described in the section above the UI consists of four main states: Now,
Schedule, Use Room, Info. The Now view displays the current state of the room, Schedule
allows events to be browsed using a timetable metaphor, Use Room is for reserving the
room and possibly unlocking the door. Finally, Info displays information about the room
e.g. contact details about the room caretaker and any further, room-specific details. The
user can jump directly to any state by touching the corresponding button on the NavBar.
Figure 4.4 shows a very high-level overview of the UI state. Each state has one or more
views, and each view can have sub-views which are simply hidden UI elements which are
shown when needed. The blue state transitions represent jumping to another view via
the NavBar controls. The reservations view is reached from the Use Room view when a
reservation needs to be placed, starting either immediately to use the room now or at some
time in the future. The Unlock Room view causes the room to be unlocked and simply
displays a message that the user may now enter the room. It automatically switches to the
default Now view once the door is opened so the WallClient is ready for the next user.

4.4.4 Now View

The most important information a WallClient should display while in idle is its room’s
current state. A passer-by should, at a glance, quickly be able to assess if the room is
available or if it is currently in use. Also, participants of future activities in a room should

Chapter 4 WallClient displays 27

quickly and easily see if they are about to enter the correct room, where their event (e.g.
lecture, meeting) is about to start shortly. The Now view is also the default view and
the starting point for the first user interaction. When the terminal detects that no user
is present it switches to the Now view to prepare for the next user. In order to generate
attention some elements of the view are animated, for example the hint that the room is
currently unoccupied can be reserved spontaneously is flashed occasionally as this feature
is unknown to new users. Once a user is detected (in future implementations possibly using
motion detection on the device’s built-in camera) the view is brought back to its ”attended”
state and the display backlight is set to full brightness. The ”attended” sub-view shows
details about the room’s current and next scheduled event along with information about
when next the room is free (and for how long). The times are given in absolute (e.g.
14:30) and relative (e.g. in 32 minutes) values, currently running events are visualized
with a progressbar-like area which is filled with color as the event progresses. A button is
placed prominently for the user to press should he wish to use the room, it will take him
directly to the Use view, see section 4.4.6. The Now view is implemented in the native
Android domain, meaning its functionality and presentation are coded in the WallClient
application using the Android framework. Data is accessed from the TUManage backend
by using remote procedure call (RPC)s to the TUManage backend core services via the
HTTP protocol. All requests are RESTful, the data format used for response data is
JSON.

4.4.5 Schedule View

The schedule view shows present and future events by making extensive use of the timetable
metaphor. Users are used to seeing paper timetables with the week’s schedule fixed next
to rooms’ doors where the WallClient is placed. Therefore it was decided to continue using
this familiar metaphor. An example of the view can be seen in figure 4.5.

Grid timeslot scheme

An overview of the current week is presented in a grid formatted according to the TUM
timeslot scheme which accommodates a repeating sequence of 90 minutes of event followed
by 15 minutes of break. This scheme was adopted by TUM in 2011 to unify room utilization
so rooms can be used more efficiently and users (students, staff etc.) have enough time
to travel from one event to the next. The exact grid scheme to be used for the display
can be changed dynamically by the corresponding backend service because this view is
implemented in the code-on-demand domain.

Chapter 4 WallClient displays 28

Figure 4.5: The schedule view with some sample events

Code-on-demand domain

In contrast to the native Android implementation of the Now view, when the user requests
the Schedule view to be displayed a REST call is made to the backend via HTTP to first
fetch the view containing the timetable widget. Once downloaded, the timetable widget
class is bound to a backend resource, so it makes another call to the backend to fetch the
event data. When the second call completes the data is populated into the grid widget by
the class’s code. Which code, and with which parameters it is served to the WallClient,
can be determined by the backend service at runtime, so different rooms can, for example,
show different grids or some other criteria be used for the dynamic behavior.

Info popup

Events are shown as overlays on the grid in the form of colored boxes (depending on the
event type) which contain the event’s type code (e.g. VO for ”Vorlesung”, lecture) and
the name of the event, space permitting. Longer text is cut off using ellipses (...). Each
event overlay is responsive to touch events, this is hinted to the user using an info and
hand icon (fig. 4.6). When the user touches the icon or the overlay a dialog is overlayed
across the entire view showing the event’s full details and any advanced information. The
user can close this dialog by touching the ”close” button, a timeout has been implemented
so the dialog closes automatically when the user steps away from the terminal. Touching
any area on the schedule grid not occupied by an event opens a similar dialog asking the
user if he would like to place a reservation for the room at the selected timeslot. Finally,

Chapter 4 WallClient displays 29

Figure 4.6: Icon hinting touch action to show information

the user can page to the next and previous weeks by using the bar at the bottom of the
view. A button is provided to quickly jump to the current week.

4.4.6 Use Room view

When a user wishes to use the room, either immediately or in the future, the ”Use Room”
shortcut in the NavBar brings him straight to the Use Room view. One of three possible
sub-views is now shown, depending on the state of the room.

The room is occupied with a private event

If the room has a current reservation where the privacy setting ”lock the door” has been
selected the in-use sub-view is shown listing the reservation owner and type or reservation,
as well as the remaining time the reservation is in place. If the option ”do not disturb”
was chosen during reservation this text is also displayed prominently on the view. Buttons
are provided for the reservation owner to cancel the reservation or open the door (i.e.
when he is using the terminal to gain access to the room during his reservation). In this
case the identity of the user needs to be verified so the session is briefly delegated to the
Authentication view (see 4.5). Afterwards the user is taken back with the desired options
accessible (provided the authentication was successful).

The room is occupied with a public event

Should a public reservation like a lecture or seminar currently take place in the room the
extended details about the reservation are displayed, together with a green entry symbol
and the notification text that the door is open for event participants to enter the room.
Buttons are again provided for the reservation’s owner to cancel or modify the reservation,
e.g. to lock the door by making the reservation private.

Chapter 4 WallClient displays 30

The room is unoccupied

This sub-view tells the user that the room is currently unoccupied and may be used straight
away, provided a reservation is quickly performed in 3 easy steps. A confirmation button
is provided to take the user straight to the Reservation view, because the room needs to
be reserved in order to be used, even if the reservation begins immediately.

4.4.7 Reservation view

The Reservation view is primarily used to place a reservation, beginning either immediately
or at a chosen time in the future. In contrast to other parts of the UI the Reservation view’s
user-interaction style is of the anthropomorphic approach [10]. This approach to human-
computer interaction involves designing a user interface to possess human-like qualities.
The Reservation view consists of a series of sub-views asking the user information about his
reservation requirements. Answering one question brings up the next question, when finally
an overview is presented and the user asked to confirm his choices. He can at any time
go back or forward to any question using a breadcrumb- and progressbar-like navigation
element positioned at the bottom of each view. Questions asked are the following,

• Reservation start time. The user is asked if he would like to start his reservation
immediately, in 30 minutes or at some point of time in the future. If the room is
currently in use the user is asked if he would like to reserve after the current event.

• Reservation duration. The maximum possible reservation duration is shown (to avoid
conflict with another event, else the maximum reservation limit is enforced) and the
user can choose the reservation duration in 15 minute steps. The absolute and relative
(e.g. ”in 23 minutes”) start and end times are shown for convenience.

• Reservation use. Next, a list of choices is displayed asking what the reservation is
for. This information is used for the Now view information display while the room
is in use. Also it is aggregated for statistical purposes for the room administration.

• Privacy settings. Here the user can choose if the door should be unlocked during
the reservation time or if only he may unlock the door. In this case the door will
automatically be locked for everyone on the outside at 10 minutes after the reservation
start time until the reservation ends. The door can, of course, always be opened from
the inside. The reservation owner can at all times unlock the door from the outside
using the Use Room view’s corresponding button and authentifying himself.

• Identification. The AuthView (4.5) is used to determine the identity of the user
which is subsequently displayed. An option is provided to correct this identification
name in case the user wishes to change it.

Next, a summary of the provided information is presented and the user confirms that the
system has gathered his reservation wishes correctly. A RPC is invoked (in the background)

Chapter 4 WallClient displays 31

Shortcuts by using elements on breadcrumb bar

Choose start time Choose duration

Choose purpose

Choose privacy levelConfirm reservation

Figure 4.7: Subview sequence while placing a reservation

to the backend’s reservation service to place the reservation. While the request is being
handled remotely the user is given feedback that the task is being processed by means of
a throbber animation (see 4.3.4). Once the backend has processed the reservation request
feedback about its success is presented to the user, together with either unlocking the
door (if the reservation starts immediately) or the note on how to open the room when
the reservation starts (by selecting the ”Use Room” navigation). Figures 4.8 through 4.12
show screenshots of the Reservation sub-views of our prototype implementation.

4.4.8 Authentication view

The authentication views are part of the AuthService described in the next section, 4.5.

4.5 Authentication service

4.5.1 Goals

Authentication of the user towards the TUMobile system is a tricky challenge. On the one
hand, every TUM user already has a username and login credentials to the campus-wide
single sign-on (SSO) service employed at TUM, so it would make sense to use this consis-
tent, secure and well-supported service. On the other hand, security considerations make it
difficult to justify requiring users to input their password on TUManage WallClients. Not
only could attackers watch users as they enter their password on the easy to observe Wall-
Client touch-screen hanging on a hallway’s wall, potential attackers could also install rouge

Chapter 4 WallClient displays 32

Figure 4.8: Reserving a room, step 1

Figure 4.9: Reserving a room, step 2

Chapter 4 WallClient displays 33

Figure 4.10: Reserving a room, step 3

Figure 4.11: Reserving a room, step 4

Chapter 4 WallClient displays 34

Figure 4.12: Reserving a room, step 5

fake WallClient terminals where unsuspecting users would enter their password, believing
they are, in fact, interacting with TUManage.

4.5.2 Concept

The AuthService is a service implemented in TUManage where users authentify themselves
via their web-enabled mobile phones. Special care was taken to ensure the service is
compatible with virtually all smartphones available by using standard web technologies
omnipresent in all smartphone platforms. Client authentification is performed using a
trusted and protected terminal, the smarphone. Server authentification is performed via
standard Internet public key infrastructure (PKI).

4.5.3 Sequence

Please refer to figure 4.13 for a communication sequence diagram and figures 4.14 through
4.18 for the sequence of UI views presented to the user. The large screenshots are from
the WallClient while the smaller, portrait-orientation ones are from the user’s smartphone.
When authentification is required by TUManage the AuthService displays a Quick Re-
sponse (QR) code on the WallClient containing a special, publicly accessible Internet
Uniform Resource Locator (URL) of an AuthFramework resource hosted on the TUManage
backend server. The URL contains a newly generated session ID in its query parameter
payload. The user is asked to scan the code using his Internet-enabled smarphone which

Chapter 4 WallClient displays 35

WallClient TUManage backend

scans QRCode(url, SessionID)

MobileClient

HTTP GET url

MC-AuthUI

POST (username, password, sessionID)

POST incomplete usernameusername entry

POST incomplete usernameusername entry

...

authorization token

AuthRequest

SessionID, QRCode(url, SessionID)

Username,
password
verified

Browser
application
launched

Message OK

MC connected

User types in
username

Username
appears

while typing

QR code
disappears

QR code
displayed

User scans
QR code

UI displayed

Figure 4.13: Sequence diagram of user authentification using MobileClient session through
AuthService

Chapter 4 WallClient displays 36

will follow the standard Hypertext Transfer Protocol Secure (HTTPS) URL by opening
the phone’s web browser. Once the connection is established the backend will serve an
instance of the Mobile Client (MC) AuthUI, a JavaScript enabled HTML5 web applica-
tion. Simultaneously, a message is sent to the WallClient to stop displaying the QR code
to minimize the exposure of the security-sensitive QR code. The sessionID sent on the QR
code’s payload is now tied to the MC AuthUI instance running on the smartphone. On the
WallClient the user is now presented with a message to continue the authentication pro-
cedure on his smartphone. Here, a field for username and password are provided, where
the user enters his details. While entering his username, the character input is relayed
to the WallClient via the backend service so the text appears on the WallClient while
the user is typing it into his smartphone. This assures him that his smartphone really is
paired with TUManage and the WallClient session and some attacker has not scanned the
QR code over the user’s shoulder to ”steal” the session. The user’s credentials have now
reached the server through a secure channel and can be verified using a credentials store
or a Lightweight Directory Access Protocol (LDAP) call etc. Once the user is successfully
authenticated his sessionID is marked as valid and he can continue his now authenticated
session on the WallClient. A result message is displayed on the smartphone that the session
will now continue on the WallClient and the smartphone is no longer needed.

Automatic sign-on

If the user wishes, he can permanently bind his TUManage identity to his smartphone,
for a maximum duration of 1 month. In this case, a cookie containing a TUManage
authorization token is stored on the smartphone. In future, when a WallClient session
needs to be authenticated, the user simply needs to scan the QR code presented. The
smartphone’s initial GET request to the backend AuthService resource will contain the
cookie containing the identity token which is matched by the AuthService’s token store
in the TUManage backend. Instead of serving the MC AuthUI the session is authentified
immediately and the user does not need to enter his username and password.

Security mechanisms

To sum up, authentification of the user towards TUManage is done using a user-
name/password pair. This account is either registered directly in TUManage’s backend
datastore or it can be verified using the TUM SSO service via a dedicated LDAP inter-
face between the TUManage core service and the SSO server. In our prototype imple-
mentation the simpler internal authentication using the TUManage credentials store was
implemented. Authentification of the server towards the user is done via Secure Sockets
Layer (SSL)/Transport Layer Security (TLS) certificates using the same principles as de-
scribed in section 4.6. The user simply needs to ensure that the URL displayed in his
smartphone’s browser after scanning the QR code is really that of TUManage, and that

Chapter 4 WallClient displays 37

Figure 4.14: Step 1: QR code is displayed on WallClient

no certificate errors are displayed by his smartphone. The TUManage server certificate is
validated by the chain of trust provided by the PKI trusted by the smartphone’s browser
vendor.

4.6 Security

With the TUManage system deployed at multiple locations within a building it needs to be
interconnected using easily available network infrastructure. Care has been taken to ensure
these basic security services: Confidentiality, integrity, authenticity [27]. Implementation of
these services is achieved using the SSL/TLS protocol which provides server authentication,
data encryption and data integrity functionality.

4.6.1 Implementation

On the WallClient side the SSL/TLS stack integrated into the Web-
View is used for the JavaScript domain, for the native domain the
org.apache.http.impl.client.DefaultHttpClient bundled with Android is used. The
TUManage backend service makes use of Apache httpd’s SSL/TLS stack, see 5.4.2.
Certificates for the backend service do not need to be explicitly imported into every
WallClient device if the server certificate is registered by a Certificate Authority (CA)
recognized by a root CA included in the Android framework. In this case the chain of
trust provided by the PKI trusted by the Android platform reaches the server certificate
without interruption. This is the case with our prototype implementation where the TUM
CA signed the TUManage server certificate, whose certificate was in turn signed by a CA

Chapter 4 WallClient displays 38

Figure 4.15: Step2: QR code scan opens MC AuthUI

Figure 4.16: Step3: Username is entered and appears on WallClient while the user types
on the smartphone

Chapter 4 WallClient displays 39

Figure 4.17: Step 4: Authentication succeeded displayed on the smartphone

Figure 4.18: Step 5: Authentication success displayed on the WallClient, session is now
authenticated

Chapter 4 WallClient displays 40

trusted by the Deutsche Telekom Root CA, which is recognized by and included in the
Android platform operating system.

4.6.2 Mechanism

When a SSL/TLS connection using the HTTPS protocol is initiated the connection is
established using a handshake protocol. The client and server negotiate the strongest
algorithms from their CipherSuites (list of available cipher mechanisms for e.g. hashing and
encryption) and exchange certificates. These certificates may be validated by contacting
the issuing authority to ensure the certificate is valid and has not been revoked. Next, a
session key is generated using the asymmetrically encrypted exchange of a random number.
The session key is used to encrypt the session, which is form now on held using the HTTP
protocol.

4.6.3 Client authentification

The use of a server certificate is standard with HTTPS but this only authenticates the
server to the client (and helps protect the session key). Client authentication is where
the client additionally sends its certificate to the server so the server can authenticate
the client. Because there is considerable overhead to deploy this form of authentication
(all clients need a certificate signed by a CA recognized by the server) our first prototype
implementation uses a different mechanism for client authentification: The HTTP Digest
authentication scheme as defined in RFC 2617 [11]. Here, login credentials or a Pre-shared
Key (PSK) from the client are verified by the server. A hashing algorithm and the use of
a number only used once (nonce) prevent the credentials from being sent in plain-text on
the HTTP layer and make cryptanalysis difficult. Plain-text authentification would also be
possible as the WallClient has theoretically already authentified the server before sending
the password on the HTTP layer but it is still possible that HTTPS is accidentally switched
off during future maintenance of the TUmanage system. Then the digest authentication
would serve as a fallback to prevent plain-text passwords being sent over the unsecured
network connection.

Chapter 4 WallClient displays 41

Client Server

Client Hello (ID, RND1, CipherSuite)

Server Hello (ID, RND2, CipherSuite)

Certificate

Certificate Request

Hello Done

Certificate

ClientKeyExchange (Enc PubKey Server)

Certificate Verity (Enc PrivKey Client)

ChangeCipherSpec/Finished (Enc SessionKey)

ChangeCipherSpec/Finished (Enc SessionKey)

...
Continuation of HTTP protocol

in now encrypted channel

Possible
certificate

revokation check
through CA query

Possible
certificate

revokation check
through CA query

Figure 4.19: SSL handshake sequence diagram (Source: [27])

Chapter 5

Backend service

5.1 Goals

The counterpart of all WallClient displays is the central TUManage backend core service.
If forms a centralized entity responsible for keeping state of the current room data. Instead
of storing data like a room’s state or the room reservations on the WallClient itself it is
managed by the backend which holds the master instance of all data. The advantage of this
approach is that all data is available across all devices and concurrency is guaranteed. An
example would be that a building manager could see an overview of all rooms’ states on a
special administration interface (either on the same hardware as the WallClients or a web
interface). Another example would be when rooms with multiple doors have a WallClient
at each door. When state is changed using one WallClient this is immediately propagated
to and visible on the others. When RoomControl clients are used to monitor a room’s
environment’s state this data, too, is aggregated at the core services and available on all
devices and clients.

The backend core service provides a common interface to all WallClient instances and
handles their requests via a REST based request-response model (described in section
5.2.3 below). State and other information is managed transparently and centrally, while
ensuring data concurrency and consistency.

Apart from handling requests by WallClients, the backend service also contains services
for handling requests by external clients using the AuthFramework (see section 4.5), for
example, when a user authenticates himself to TUManage using his smartphone.

5.2 Architecture considerations

A couple of core decisions were taken while implementing the TUManage core backend. For
one, a client-server based approach was chosen, where the core backend takes on the role as
a server and the WallClient devices are the clients. A Service Oritented Architecture (SOA)
was implemented using the REST style, resulting in so-called ”RESTful” resources offering

42

Chapter 5 Backend service 43

TUManage DBMS server

Administrative client

TUMonline service

Public building WLAN /
Internet

WallClient

Room
Control

Room #2

WallClient

Room
Control

Room #1

WallClient

Room
Control

Room
Control

WallClient

Room
Control

Room #N

...

Room LAN

TUM SSO LDAP server

WLAN

WLAN

WLAN

User’s
MC

3G Internet / WLAN

Building LANBuilding LAN

Building LAN

Administration LAN

TUManage service

TUManage gateway service

TUManage backend LAN

Firewall

Figure 5.1: High-level architecture of core backend in global context of the whole system

services in form of methods invokable by clients. This section illustrates the core high-level
architecture of the backend, while sections 5.4 and 5.6 describe the platform used and the
implementation. Section 5.5 takes a detailed look at the actual services offered.

5.2.1 System Architecture Overview

This section provides a high-level overview of the TUManage core backend in the context
of the global TUManage system.

5.2.2 Service oriented architecture (SOA)

SOA is a collection services with a loose coupling and dynamic binding between services
[26]. It relies on service orientation as its fundamental design principle. A service is a

Chapter 5 Backend service 44

well-defined, self-contained function which does not depend on context or state of other
services. If a service presents a simple interface that abstracts away its underlying com-
plexity, users can access independent services without knowledge of the service’s platform
implementation. Services manage their own data and present a coherent and consistent
interface to service requesters.

One main reason for adopting a SOA is the efficient interoperability and interconnection
of systems running on different platforms and written in different languages. Also, services
can be re-used, making implementation very efficient and easily scalable. For example, the
same service is invoked in the background by WallClients to query room events when both
viewing room info and when reserving a room. Another example would be the AuthService
and the BarcodeService. They are used by different parts of the TUManage system at
different times and in different context, yet the same service is requested.

TUManage uses web services as the approach for building a SOA based on web technologies,
adopting the REST style.

5.2.3 REST

REST stands for Representational State Transfer and is a term introduced by Roy Fielding
in [16]. REST is an architectural style for distributed systems, derived from architectural
styles like ”Client-Cache-Stateless-Server” and ”Layered-System” and subjected to an ad-
ditional set of constraints. The constraints considered when specifying the TUManage
backend are briefly described in this section, as well as their implication on TUManage’s
design.

Client-Server

The client-server style, widely used in network-based applications, defines a server com-
ponent as a reactive process triggered by client who make a request. With TUManage,
requests to the central TUManage backend server originate from any one of the WallClients.
There is a common interface defined for communication between clients and server, in this
case HTTP exposed resources (realized by Java Servlets) with parameters and response
types shown in Appendix A. On the WallClient clients communication is abstracted either
using the HttpRequest/HttpResponse classes for code running in the native Android do-
main or an Asynchronous JavaScript and XML (AJAX) wrapper for those parts running
in the JavaScript.

Chapter 5 Backend service 45

Stateless

The requests to TUManage are stateless, so no information about a transaction is stored by
the server until the transaction completes. Each request from client to server must contain
all the information necessary to understand the request and cannot take advantage of any
stored context on the server [16]. As soon as a request has been answered the communica-
tion session ends. Advantages of this constraint include better scalability, reliability, and
generally a simpler, easier to debug communication.

Cache

Although caching of requests from the WallClients is not performed in a normal TUManage
use-case, the possibility caches present in the HTTP data transfer path are still possible.
While the infrastructure connecting the WallClients to the TUManage backend services
is known (it usually belongs to the building administration, in our prototype’s case the
campus’ wireless LAN provider) it is possible that e.g. transparent HTTP proxies are
integrated into the infrastructure at some point in the future.

Uniform Interface

The overall system architecture is simplified and visibility of interactions is improved by
using a general and uniform interface between components. The implementation of the
interface is decoupled from the services it provides. The TUManage core service, being a
request-based RESTful system, uses the standard HTTP GET/POST interface. Resources
are identified by Uniform Resource Identifier (URI)s and state representations are usually
returned in JSON [4] or XML, or as a human-readable HTML document.

Layered System

Component behavior must be constrained in such a way that each component cannot ”see”
beyond the immediate layer with which it is interacting [16]. For a client it is transparent
which server is used for the request, or if the request has traversed a proxy or cache or
load balancer. For example, within TUManage the backend’s Structured Query Language
(SQL) database is completely hidden from from frontend WallClient transactions, who
never see the entire data or how it is stored. Also, clients need not know which server is
handling their request. TUManage could be scaled by running multiple instances of the
backend services on different application servers and load-balancing requests among them.
A common SQL Database Management System (DBMS) server or a DBMS cluster would
then ensure consistency of state throughout the system.

Chapter 5 Backend service 46

Code-on-demand

In the code-on-demand style, a client component has access to a set of resources, but not
the know-how on how to process them. It sends a request to a remote server for the code
representing that know-how, receives that code, and executes it locally ([16]). WallClient
functionality is extended by downloading and executing code in the form of JavaScript when
requesting resources outside of the Android native code domain. This directly results in
less deployment overhead when adaptations need to be propagated. This functionality is
not implemented at the client, it is downloaded upon request. As an example, when a
request to reserve a room is made by the WallClient, the exact process is not yet known
to the WallClient engine. The TUManage backend serves the code required to complete
the user’s reservation process dynamically, in the form of JavaScript, which is executed in
the context of the UI the user is acting upon. Customization can therefore be served on
demand and be changed dynamically (for example, during special events like seminars the
user could be required to state if he is a seminar guest or a member of the normal staff).

5.3 Summary

The main reasons for using REST to implement SOA are simplicity, robustness and scalabil-
ity. Once many clients interact with the server and request service a considerable overhead
would be generated if state had to be stored for each client or client session. Both the
services and the system itself would become increasingly and unnecessarily complex and
prone to bugs, especially during maintenance and scaling in the future. Debugging and
overview of the system internals are greatly enhanced.

5.4 Platform considerations

5.4.1 Servlet container

The TUManage core services are implemented as a JavaEE [24] web application hosted on
a platform (called container) implementing the Servlet 2.5 and JavaServer Pages 2.1 spec-
ification. Apache Tomcat version 6.x [14] was chosen because it implements the required
specifications while still being very light-weight. Version 6 has been proven to be stable
and ready for productive use.

Chapter 5 Backend service 47

5.4.2 Security

An Apache httpd server [1] runs alongside Tomcat to handle incoming requests from remote
clients instead of Tomcat itself accepting incoming connections from the outside. The
reason for running httpd as a proxy between Tomcat and remote clients is in order to
utilize httpd’s SSL processing. HTTPS is enforced on all incoming connections (they should
already be requesting a HTTPS connection in the first place) so that communication is
encrypted and the server is authenticated to the client. A secure communications channel is
thereby established over a potentially unsecure network, as a protection from eavesdropping
and man-in-the-middle attacks. httpd connects to Tomcat via the Apache JServ Protocol
(AJP) connector using the AJP protocol, a Transmission Control Protocol (TCP) based
binary protocol created specifically for this task. In Tomcat it is implemented natively
and on the Apache httpd server the mod tomcat server module is used. AJP features
high performance, reuse of a connection for multiple request/response cycles and access
to the SSL details like cypher suite and client certificates from the httpd proxy. Security
for the communication with the WallClients, which are at the other end of the encrypted
connection, is discussed in detail in the section on WallClient security, section 4.6.

5.4.3 Database management system

Data in the TUManage core service is persisted exclusively in the DBMS due to its superior
transaction management and mechanisms for ensuring consistency and concurrency. No
data is stored directly inside the JavaEE application and all persistence classes are wrappers
for invocation of procedures on the DBMS. The reason for the strict separation of code
and data is code clarity, for one, but also it allows the system to be scaled easily, see
5.4.4. The open-source MySQL community edition server [6] was used because it fully
supports all required features, meets performance expectations and it available free of
charge. Connection to the database abstraction layer is via Java Database Connectivity
(JDBC) through MySQL’s own JDBC driver (called MySQL connector/J).

5.4.4 Server host

Requirements for the server platform were simply the ability to run the Tomcat and MySQL
stacks. A Linux flavor was chosen due to installation and management (updates, patches)
simplicity as well as security. It was decided to already make provisions for scaling the
system by setting up two servers, currently one for the public-facing web application and
one for running the MySQL DBMS. Unix cron was used to trigger automatic recurring
tasks by programmatically invoking special, non-public servlets at specified intervals. This
is used for periodic maintenance, data synchronization with other systems and state syn-
chronization with TUManage RoomControl clients, if applicable. When scaling server

Chapter 5 Backend service 48

hosts care should be taken to run the cron service on only one server, otherwise jobs would
run multiple times, which is unnecessary in terms of resource consumption.

Scaling

In future, different parts of the web applications services could run on different servers,
or the entire environment is cloned across multiple physical machines while dispatching
incoming requests using a load balancer. The DBMS would, by design, ensure concurrency
and consistency of data, even if it, too, is distributed across multiple machines in a master-
slave DBMS cluster (available from MySQL and other DBMS vendors).

5.5 Services offered

Services are provided by the TUManage core backend as a set of RESTful resources identi-
fied by their URIs. Abstract resource URIs end with .resource, they are RESTful and can
be fetched or manipulated using HTTP methods. Direct services are addressable via their
URIs ending with .do. This section attempts to highlight the implementation of some im-
portant services offered by the TUManage core backend. As the resources fall into different
organizational packages (both logically and in URI path) they are explored in the following
paragraphs according to package. A full list of resources, methods, parameters and return
types can be found in the code documentation accompanying this thesis’ practical part.
An excerpt can be found in Appendix A.

5.5.1 Administrative resources

Administrative services are in the /admin/ URI namespace and are used to administer
the TUManage platform. Elevated privileges are required to access these resources. They
include methods to, for example, kick-off a synchronization of room and event data from
the TUMonline system. A list of the most important ones can be found in table A.1.

5.5.2 Room management resources

These resources represent the room being managed (Room) as well as reservations and
events taking place in the room (RoomEvent). Methods exist to manipulate reservations
(query, create or modify RoomEvents). The RoomLock resource is a little bit more ab-
stract, it is used to unlock the room’s door by successfully (i.e. with the proper autho-
rization and at the proper time) invoking its GET method. The URI namespace of these
resources is /manage/*, please see table A.2 for some examples.

Chapter 5 Backend service 49

5.5.3 WallClient resources

The WallClient resources are used by the WallClient terminals’ GUI to download code for
viewing and/or manipulating room or event resources. Specifically, they are used by the
JavaScript domain of the WallClient application, and TUManage serves JavaScript code
inside HTML5 documents. The resources are in the URI namespace /wallclient/*, a few
examples can be found in table A.3.

5.5.4 AuthService resources

Resources part of the AuthService can be found in the /auth/* namespace. They are used
for e.g. creating auth sessions or to authenticate a user by binding him to an opened
session after verifying his identity. The QR code scan performed by the users points his
smartphone to the AuthenticationClient.resource which causes a code download of the
JavaScript/HTML5 authentification client. AJAX is then used to interact with the other
AuthService resources by invoking other AuthService resource’s me. Please see section 4.5
for a description of the AuthService.

5.5.5 Barcode resources

The barcode resource can be found at /resources/Barcode.resource. It is used to generate a
2D QR code containing the payload encoded in the GET request’s encdata query string. In
the prototype implementation Google’s chart API is used to render the barcode containing
the payload assembled by the Barcode.resource barcode factory class.

5.5.6 Crond resources

These resources are not accessible from the outside network connection, rather their meth-
ods are invoked automatically from the crond service (a job scheduler in Unix operating
systems) running on the local server via the /resources/cron/* path. Crond will, at inter-
vals set in the crond config file, periodically invoke certain servlet via a local HTTP call to
perform periodic administrative tasks. One important task is the automatic unlocking of
rooms with public events taking place. The unlocker service will check if any locked rooms
currenlty have public events of have public events due to start in less than 10 minutes
and unlock these rooms via their RoomControl (see 6) systems. The crond is also used to
synchronize data with external systems (see 5.7.1).

Chapter 5 Backend service 50

5.6 Implementation details

5.6.1 MVC and Servlets

Controllers

The TUManage backend core services are implemented using the Model-View-Controller
(MVC) design pattern [17]. Each package offering services has one or more servlets, acting
as controller class, implementing the HttpServlet abstract base class. This allows the
servlet container to dispatch incoming web requests to an instance of the appropriate
servlet, using a thread from the application container’s (Tomcat) thread pool. The servlet
acts as the controller in the MVC pattern by performing the following steps. First, the
request’s parameters are processed and checked for missing or invalid data. Then, actions
are performed on an instance of the appropriate model. Finally, the view is invoked to
present a response back to the requester.

Models

Models are objects abstracting behavior, data and state. They are acted upon by requests
to the service by means of the controller servlet. Models are instantiated by the persistence
layer’s store or factory classes. Operations on the model are translated to Create Read
Update Delete (CRUD) operations by the database abstraction layer (see 5.6.2) which are
passed to the DBMS.

Views

Views are used by the controller to present data or results back to the requester. The
format of the response can be either in JSON or HTML/JavaScript. A JSON view is
instantiated by invoking a JSON rendering engine for creating machine-readable output
from a model object. This is used primarily by the WallClient native Android domain and
the JavaScript domain’s AJAX RPC calls). HTML/JavaScript is created by dispatching to
a JSP page in the /WEB-INF/views/ directory. This is used primarily by the WallClient
JavaScript domain to serve combined code and data. It is also used by the AuthService’s
MobileClient service (with JSON-based AJAX calls in the background).

5.6.2 Database abstraction layer

In order to separate database connectivity implementation to the controller fetch-
ing/persisting model objects a database abstraction layer has been implemented, called
the data store. Access to the underlying DBMS system is supported by the open-source

Chapter 5 Backend service 51

myBatis object-relational mapping (ORM) framework [5]. It was chosen over other com-
monly used ORM frameworks like Spring [7] or Java Data Objects (JDO)/Java Persistence
API (JPA) implementations due to its light-weight support for easily obtaining full control
over SQL commands used in the background when communicating with the SQL DBMS.
Only with a fully customizable interface to the DBMS is it possible to support any given
DBMS schema or to design one’s own, which was favored in trade-off for higher initial
implementation effort. myBatis essentially provides a mapping of JavaBean objects to
relational database queries in SQL, and vice-versa, using pre-defined mappings taken from
Java annotations or loaded from XML descriptor files. This mapping supports CRUD and
can therefore be done in both directions, so a database read can output a populated Jav-
aBean, or a JavaBean’s data can be converted to a database create/update/delete. Also,
a JavaBean may be used as a parameter for a database query returning another JavaBean.
This flexibility allows complex SQL queries to be abstracted behind methods the datastore
exposes, using only object oriented principles in the actual code, keeping it free of SQL.

5.6.3 Database schema

Figure 5.2 shows the database schema used by TUManage, in Chen’s notations [19], [15].
The schema implementation can be created from scratch on a MySQL DBMS server by
running the /dbms/*.sql scripts found in the release package of this thesis’ practical part.
The room entities (rooms, roomTypes, roomPurposes) are used to store data about the
room itself. roomEvent is data about an event taking place in a room (in a past, present
or future point in time). The auth* entities are used by the AuthService while the userID
can be used by any service to describe a particular authenticated user, as is done by the
room and roomEvent entities. Their authUser entity refers to the authenticated user and
authSession is any (both authenticated to a user or unauthenticated) session with the
AuthService. Sessions can be reused once authenticated, up until the expiry time, if the
corresponding service allows this.

5.7 Interface to supporting systems

In order to integrate tightly and seamlessly into the user’s environment TUManage is
required to interact with other existing systems. For one, the existing room management
system employed at TUM, TUMonline, is currently used to manage the lecture halls. Many
smaller seminar rooms are managed using s selection of paper sheets, Microsoft Exchange
or similar methods.

Chapter 5 Backend service 52

 sapID

 roomID

 address

 seats

 area

 contactPersonID

 contactPerson
Name

 additional
Information

 number

 nameinfo

 syncID

 update
Timestamp

rooms

room
Types

 typeID typeName

room
Purposes

 purposeID

 purposeName

ofType

hasPurpose

terminals roomControl
Devices

is
controlling

is showing

 terminalID

 terminalName

deviceID

 terminalLocation
Comment

 hostname

 port

room
Events

 eventID

 toSingle EventID startTime

 endTime

 eventTitle

 toEventID

 typeID

 statusID

 groupID

 groupName

 courseCode

 courseType

 syncID

 updateTimestam
p

held in

authUsers
auth

Sessions

may book

created

 userID

 userName

 userPassword

 mcHostAddress

 sessionKeyExpiry

 userVerification
Phrase

 sessionID

authorises sessionKey

 mcTerminalName

n
1

n

1

1

n

n

1

n

1

n

n

n1

n
1

Figure 5.2: Entity-relationship model or implemented database schema

Chapter 5 Backend service 53

5.7.1 Interface to TUMOnline

TUMonline was developed by the TUGraz and is now maintained by their IT depart-
ment under the name of Campus Online. TUMonline is a web-based complete university
management system which also provides for the management of rooms by univerity staff.
Currently it is the official tool of choice at the TUM and it is compulsory to manage lecture
halls with this tools. As TUManage is used to manage all kinds of rooms, including lecture
halls, it needs to synchronize with TUMonline.

Sync strategy

As TUMonline is only used for very static, seldom changing events like lectures, which
recur on a weekly basis, a one-way sync from TUMonline to TUManage was evaluated as
sufficient. TUMonline should explicitly not be used to reserve rooms for one-time seminars
or ad-hoc meetings. TUManage should take care of these events while importing the static
events like lectures in regular intervals. From evaluation of TUMonline a sync period of
once per day seems sufficient as the event date itself is not updated very much often.
Still, the prototype implementation of TUManage synchronizes once every hour in order
to study system performance.

Data exchange

TUMonline offers an authenticated data export mechanism for room and event data via
a HTTP resource. The URI is queried with parameters like the room’s SAP ID (SAP is
the commercial asset management system used at TUM), the start and end dates for the
query and an authentication token. It is also possible to query for a list of room SAP
IDs by specifying an administration’s oraganization ID. Returned data is in XML format
utilizing a schema specified by Campus Online.

TUManage sync mechanism

As can be see in figure 5.3 the sync process is initiated by the controller servlet which
supervises the process writes transaction information to the log. Parameters from the
query are assembled and passed to the QueryEngine, which creates an authenticated HTTP
connection via a query to the TUMonline gateway service. The XML data received in the
response, an XML document in the RCMv1.0 schema [], is passed on to an instance of the
XML parser.

Chapter 5 Backend service 54

Controller
Servlet

QueryEngine
TUMOnline

RPC

XML parser

Persistence
layer

TUMOnline
Data Store

Unknown format

HTTP response

RDMv1.0 XML document

at.campusonline.rdm.RDMDocument object

parameters

HTTP request

TUManage
Data Store

Figure 5.3: Data flow diagram of one-way sync with TUMOnline

Chapter 5 Backend service 55

XML Parser

To implement this parser the Apache XMLbeans [] framework was. It generates JavaBean-
compliant Java classes from the XML schema obtained from Campus Online. Special parser
methods are attached to data classes which wrap calls to the XMLbeans library factory
classes. Invoking the appropreate method on a new instance of such a root object with
XML stream data will automatically populate the object with the entire data structure
contained in the XML document. The given XML schema is, in essence, ”translated” to a
Java data structure consisting of primitives, classes, Lists and Maps. The instance’s data
is populated form any XML stream adhering to the Schema.

Persisting the data

This JavaBean is dropped to the persistence layer implemented as a store where the my-
Batis ORM creates a set of SQL ”update” and/or ”insert” queries sent to the DBMS for
persisting the data. Changes are committed by the controller servlet if there are no errors
and the changes are taken into effect.

Automatic sync

The process descripbed above can be kicked off by manually invoking the desired sync
controller servlet. The process is in addition also automated using the TUManage server’s
crond service. It will, at intervals set in the crond config file, periodically invoke the sync
controller servlets which will perform the sync. Log data is written to disk for debugging
in the case of errors.

Chapter 6

Interacting with the environment

6.1 Introduction

A crucial part of the TUManage system’s usability and transparency is its capability of
interacting with the user’s environment while being noticed as little as possible. For our
first prototype installation it was decided to control and monitor a room’s door lock.
A module, called RoomControl, was designed and built for this purpose, a sensor and
an actuator were attached to detect the door’s state and control its lock. This chapter
attempts to describe the RoomControl module design and implementation, both for the
hardware and the embedded software parts. At the end a brief look at the prototype
installation is given.

6.2 Requirements

From the usability consideration for the TUManage system as a whole the following key
requirements for the RoomControl module were distilled.

Transparency - A user should not need to worry about how to operate the lock system, i.e.
it should not require user intervention to operate. It should be clear to the user wheather he
can directly enter the room or if additional action is required, like authentification with the
system. Once his identity has been determined there should be no further action required
by the user and he should be able to enter the room. The user should not be confused
or surprised by the lock system’s operation. An example of this would be that it should
always be clear in what state the lock is in, otherwise a user could falsely assume that the
door is unlocked and be presented with an unmovable door handle. This requirement is
addressed by both the WallClient GUI (see section 4.4) and the door actuator (see section
6.6).

Safety - In order to comply with building safety regulations a user wishing to open the
door from the inside should always be able to do so, even under unforeseen circumstances
like emergencies or power failures. No extra precautions (like a backup battery etc.) had

56

Chapter 6 Interacting with the environment 57

to be taken as all doors controlled by the system continues to comply with site regulations.
They have unlockable handles on the inside which bypass the lock mechanism implemented
by the RoomControl.

Security - A room’s door and its lock are a vital part in securing its content against
unauthorized use and theft. Connecting this lock to a complex system via network infras-
tructure can create numerous new opportunities for a potential attacker to gain control of
the room’s lock or access its state. This is addressed in its own section, 6.5.

Cost - The RoomControl module’s total cost needed to be kept at a minimum while still
remaining flexible while the system is in the prototype phase. Throught the use of a
value-for-money rapid prototyping platform (see 6.3.2) as well as standard, off the shelf
components (see 6.3.3) the total bill of materials (BOM) could be kept well under the
project’s given constraints. Please see the parts list in Appendix B for the complete list.

Considering the above requirements two prototypes were designed and implemented. Pro-
totype 2 was installed in one of the campus’ lecture halls for demonstration and testing.
Below follows a detailed description of the RoomControl’s components and the sensors and
actuators attached in our prototype installation.

6.3 RoomControl module

6.3.1 Overview

The RoomControl control module provides the software and hardware interface for other
parts of the system to interact with the room environment, notably the room’s door and
its lock. It should therefore be able to detect the door’s state (i.e. open or closed) and be
able to lock or unlock it.

6.3.2 Controller microprocessor

While there are many possibilities when choosing an embedded microprocessor for the task
at hand, the best fit was evaluated to be the Arduino [12] platform. Due to its low cost
and open-source rapid prototyping environment, plus the availability of many libraries and
hardware extensions, it was found to be the best suited platform for the requirements at
hand. Other solutions like embedded devices running an embedded Linux were evaluated
but turned down due to the higher hardware costs involved. The Arduino variant used
for the RoomControl is an Arduino UNO, which is a Printed Circuit Board (PCB) based
on the Atmel ATmega328 microprocessor chip. The board hosts the microcontroller, some
circuitry for power supply and communication with the development environment (a FTDI
USB-to-UART driver chip) and pin headers for exposing the 14 digital input/output plus

Chapter 6 Interacting with the environment 58

Figure 6.1: RoomControl box (opened lid) with prototype 2 circuit board, Arduino and
Ehternet shield

Ethernet

12V DC, 2A max

Controller board A
(PSU)

Ethernet shield Arduino board

5V DC

SPI

Controller board B
(IO)

5V DC

5VDC
Analog

signalling

Sensors (analog)

Actuators (analog)

RoomControl

Figure 6.2: Architecture of the RoomControl

Chapter 6 Interacting with the environment 59

Figure 6.3: Arduino UNO (Source: Wikimedia Commons, CC-license)

6 analog input pins. Schematics for the Arduino UNO board can be found in Appendix
C. The Arduino board can be programmed using a C++ like syntax in a custom IDE
available from the Arduino project website [12]. The programming language syntax and
the libraries used are based on those of the open-source Wiring platform [13]. Standard
libraries are available for hardware abstraction and it is possible to import or design 3rd
party libraries. A compiler and bootloader are also part of the platform and transparently
integrated. - To compile code and launch it on an Arduino board attached via Universal
Serial Bus (USB) only two clicks are required.

6.3.3 Controller IO and PSU board

The hardware connectivity module is shown in figure 6.5 and is a custom-made circuit board
which has two responsibilities. Firstly, it connects the Arduino microcontroller board to
the sensors and actuators of the embedded RoomControl system (the Input/Output (IO)
part). The second function of this circuit board is to provide a robust and stable power
supply (the Power Supply Unit (PSU) part).

Power supply

Because the RoomControl and its attached components have individual demands on power
supply, special attention needed to be given to a single, robust power source. Table 6.1
shows the power supply requirements for the individual components.

As can be seen in table 6.1 the power supply requirements for the RoomControl are quite
different from component to component but the common denominator seems to be that
both a 5V and a 12V supply should be sufficient. The Arduino board itself has built-
in regulators for its internal operating voltage of 5V and 3V but, as it turned out during
initial testing, these are dimensioned just large enough to handle the Arduino’s own current

Chapter 6 Interacting with the environment 60

IC1
+5V

J2

J1a

J1b J3a,b

VIN VOUT

GND

R4
2k2

LED_SESSION

LED_UNLOCK

LED_ERR

R1
100R

R2
100R

R3
100R

+12V

+12V

S1

+12V

+5V

+12V

GND

5V_OUT

GND

SIG_SESSION

SIG_UNLOCK

SIG_ERR

SIG_IN_DOOR

OUT_LOCK

GND

GND

IN_DOOR

R5
2k2

RoomControl
 v1.3

29.09.2011

C1 C2

+5V

Figure 6.4: RoomControl circuit board schematic

Item Voltage Current
Arduino 5V - 20V max. 30 mA
Ethernet shield 5V max. 200 mA
Circuit board 5V max. 180mA
Door sensor 5V 10mA
Lock actuator 12V max. 700mA

Table 6.1: RoomControl power supply requirements

Chapter 6 Interacting with the environment 61

Figure 6.5: RoomControl prototype 1 circuit board

demands. Running only the Arduino and the Ethernet shield (see 6.3.7) off the internal 5V
regulator (a standard linear voltage regulator) caused it to overheat and go into thermal
shutdown. Clearly this is a design flaw in the Ethernet shield as its current drain can only
be handled when the Arduino is running off an external regulator or USB (which provides
5V at 500mA max.). Because of this reason the internal 5V regulator is not used and
the 5V supply is injected via pin 3 on the Arduino ”POWER” header from the OUT 5V
output on the RoomControl circuit board.

Because both 12V and 5V supplies are needed, a commercially available regulated PSU
was used (see parts list in appendix B) to obtain a safe, well-regulated 12V supply from the
220V mains supply. A switching supply was chosen instead of a transformer-based design
due to efficiency reasons. The PSU supplies 12V Direct Current (DC) at a maximum of
2A, which should more than suffice. The 5V supply for the Arduino, the Ethernet shield,
the sensor and the internals of RoomControl circuit board (T1, LEDs, S1) is obtained from
the 12V supply via the 5V voltage regulator IC1. From measurements and datasheets it
was determined that about 420mA is drained from the 5V supply, so in the first prototype
a standard linear voltage regulator (LM7805) was chosen for IC1. The LM7805 datasheet
lists a maximum safe operating current of 1A, more than double the required 420mA. While
doing the first circuit bring-up, however, it quickly became apparent that circuit cannot
operate productively with this configuration. The power supply broke down intermittently
(no voltage present) and the IC1 became very hot. Investigation showed that the power
dissipated as thermal losses by the IC1 equate to the following,

Ptherm = I ∗ Vdrop = 420mA ∗ (12V − 5V) = 400mA ∗ 7V = 2.94W

where Vdrop is the voltage drop across the regulator input/output pins and I is the current
through the regulator (nearly the same on the both the input and output terminals, nearly
no current through the ground pin). The following calculation is the theoretical junction

Chapter 6 Interacting with the environment 62

temperature Tj0 if the regulator is used without a heatsink. The thermal resistance from
junction to ambient air (no heatsink used) of Rj0 = 65W/K is given in the LM7805
datasheet. With this factor the temperature difference from the junction to the ambient
air temperature amounts to,

∆T = Ptherm ∗Rj0 = 2.94W ∗ 65K/W = 191.1K

At Tambient = 25◦C the theoretical junction temperature is

Tjunc = Tambient + ∆T = 216.1◦C

Clearly this is outside of the possible operating range of the package, the internal thermal
shutdown circuit would regularly disrupt continuous operation. The use of a heatsink
would cause a better thermal resistance to air Rja, namely

Rja = Rjc + Rcs + Rsa

where Rjc, Rcs and Rsa are the thermal resistances from junction to case, case to heatsink
and heatsink to air respectively. Commonly known typical values for the former two
are Rjc = 5K/W and Rcs = 1K/W , assuming a standard TO-220 package and the use
of heat-conducting paste to mount the heatsink. Therefore a suitable heatsink needs to
be dimensioned with a thermal resistance better (lower) than the value Rsa determined
as follows. For a safe junction temperature Tjunc = 70◦C at a constant ambient room
temperature of Tambient = 25◦C,

∆T = Tjunc − Tambient = 70◦C − 25◦C = 45K

is required. To ensure this, enough heat for the ∆T needs to be dissipated from junction
to air,

Rja =
∆T

Ptherm

Therefore, the desired heatsink should have at most

Rsa = Rja −Rjc −Rcs =
∆T

Ptherm

−Rjc −Rcs =
45K

2.94W
− 5K/W − 1K/W = 9.31K/W

Looking at possible heatsinks to fulfill this requirement, as well as the consideration that
the requirement is only valid for as long as the ambient air temperature around the heatsink
remains at 25◦C, i.e. the presence of convection ventilation or an active fan, it was decided
to search for an alternative means of building a stable 5V power supply. The LM7805
proved to be too inefficient and difficult to be run in the given conditions, especially
where the RoomControl needs to be available without interruption and in unattended (and
possibly adverse) environments. The alternative implemented is a much more expensive
but very efficient and robust inductive DC-DC converter. The input voltage is used to
transfer energy to an inductor at a regulated duty-cycle and this energy is removed from

Chapter 6 Interacting with the environment 63

the inductor on the output side, at the desired voltage. In contrast to the linear voltage
regulation used the input and output currents are not equal, resulting in a higher transfered
power and low (thermal) losses. The component used in the final RoomControl prototype
has an efficiency of 94% (see datasheet supplied with this thesis’ practical part’s files) and
needs no heatsink or ventilation up to an output current of 1A.

6.3.4 Status LEDs

Four status Light Emitting Diode (LED)s are available on the RoomControl module, either
on the circuit board itself (prototype 1) or the via a terminal block for external case-
mounted LEDs (prototype 2). Table 6.2 lists the indicators, their color and the state they
describe.

LED Label Color State Description
LED PWR green lit 12V and 5V power supply is ok
LED SSN green lit A session is active (not necessarily authenticated)
LED LOCK green lit Lock actuator is unlocking door
LED ERR red single blink Power-On Self Test (POST) phase during startup
LED ERR red 3 blinks Authentication failure for session
LED ERR red lit Fatal error or remote kill command (unit is offline)

Table 6.2: RoomControl LED status codes

6.3.5 Output channel

The Arduino platform has 14 digital outputs, 6 of which can provide a Pulse Width Mod-
ulation (PWM) signal, at 5V and max. 25mA, taken directly from the ATmega micro-
processor chip. Clearly these outputs are insufficient to drive any but the most basic of
actuators. The door lock actuator, for example, takes 600mA at 12V. Because of this
reason the RoomControl controller board acts as an IO adapter for the digital outputs (see
schematic 6.4). The main output channel, OUT LOCK, is driven by a relay S1 switching
the IN 12V directly. Control of the relay, in turn, is via a driver transistor circuit (R4, T1
and suppressor diode D1). Two other output channels are currently used for LED status
indicators, they are driven directly through bias resistors R1 and R3.

6.3.6 Input channel

Sensors are connected to the RoomControl controller board where the necessary bias and/or
de-coupling is performed. On the Arduino platform the analog inputs A1 through A6 are

Chapter 6 Interacting with the environment 64

used for measurement. Analog input A0 may not be connected and needs to remain floating
as it is used to collect analog noise for generating non-pseudo random numbers, see section
6.5. For the door sensor the magnetic reed relay attached to the door frame (see 6.6.2) is
connected to A1, and a pull-up resistor to the 5V supply. When the door state is requested
the voltage is compared and a decision is made halfway at 2,5 V. In future applications,
two digital inputs support continuous monitoring via hardware interrupts, however this
has not been implemented in the current RoomControl software as no ”alarm” function or
similar was needed.

6.3.7 Network connectivity

Network connectivity is achieved by attaching an Arduino Ethernet expansion module (a
so-called ”shield”) to the main board. The Ethernet shield is based on the Wiznet W5100
Ethernet driver chip. It interfaces to the Arduino base board via the Serial Peripheral
Interface (SPI) bus and has a RJ-45 Ethernet connector. A software library is available
for the Arduino IDE to assist with writing and compiling code that interfaces with the
Ethernet shield. Both TCP and Universal Datagram Protocol (UDP) are supported, in
both client and server roles.

6.4 RoomControl Software

Please see figure 6.6 for a high-level flow-chart overview of the RoomControl embedded
software. The different states and routines are explained below.

6.4.1 Initialization

On the left side of figure 6.6 the initialization routines executed during power-up are shown.
At the beginning of this process (POST) the red ERROR LED is turned on to indicate
malfunction in case the boot-up code hangs during initialization. After successfully setting
everything up the red ERROR LED is turned off again, this should happen after about
one second. Next, the main message loop is entered, which is normally never left unless
tampering with the device is detected or a remote kill-switch (”self-destruct”) command
is received. (In this case, the dieError() function is called which causes the red ERROR
LED to remain lit and the device to be disabled by sinking execution in an endless loop.)
The main message loop waits for an incoming connection from a client on TCP port 5551
and can, due to the absence of multithreading, handle only one session at a time.

Chapter 6 Interacting with the environment 65

ERROR/POST LED on

Init UART debug

Seed TrueRandom

Start Ethernet TCP listener

ERROR/POST LED off

Wait for client connection

SESSION LED on

Send handshake and version

Create SessionSalt

Send SessionSalt

Fill incoming buffer

Wait for start byte

[else]

[start byte ok]

Init HMAC digest

[message complete]

[else] ERROR LED on

[buffer overrun]

Calculate HMAC

[received salt matches SessionSalt]

Execute command

[received HMAC matches calculated HMAC]

Send AUTH_FAIL message

Blink ERROR LED twiceDelete session data

[else]

[else]

[connection accepted]

[else]

SESSION LED off

Figure 6.6: Flowchart of RoomControl embedded software

Chapter 6 Interacting with the environment 66

TUManage core RoomControl

Connect

s generate s = SessionSalt(systimer, rand)

command + s + HMAC(command + s)

compare s == SessionSalt

compare HMAC == HMAC*

Command c
PSK k

PSK k*

Execute commandACK command

ACK authentication

Generate
HMAC(command + s) with

key k

Figure 6.7: Sequence diagram for challenge-response protocol using a nonce

6.4.2 Connection handshake

Upon successful connection the SESSION LED is lit and the RoomControl’s identifier
version string is sent as a handshake. A 62-byte long SessionSalt number is generated where
the first 4 bytes are the current system uptime in milliseconds, the remaining 58 bytes are
real, non-pseudo random numbers. (Please see the section 6.5 on security below for more
info on the random number generator.) The SessionSalt is sent to the client which must
send the exact bytes back when sending its command. For security reasons the SessionSalt
is valid for exactly one command and may never be re-used. Now the routine will wait for
the start byte from the client, the American Standard Code for Information Interchange
(ASCII) encoded letter ’c’, and collect the entire fixed-length command message sent by
the client, byte by byte, before processing it.

Chapter 6 Interacting with the environment 67

Start byte index Field
0 Command (see Appendix D)
1 SessionSalt as received in handshake
63 Client HMAC
83 Terminator (one byte, either 0 or ASCII NL)

Table 6.3: RoomControl message format

6.4.3 Command Message

All command messages have a fixed length of 84 bytes. Message authenticity and autho-
rization is performed using two techniques, salting and the use of a keyed-Hash Message
Authentication Code (HMAC). For a more detailed discussion on them please see section
6.5 on security. The message structure is shown in table 6.3. Before processing an incoming
message, as is depicted on the right side of figure 6.6, the HMAC digest is initialized with
the secret PSK present in both the RoomControl software (the global byte-array called ms-
gkey) and any authorized client (like the TUManage backend service). The HMAC of the
Command and SessionSalt parts of the command message is calculated using the PSK and
compared to the HMAC sent by the client. Also, the SessionSalt received in the message
is compared to the current session’s SessionSalt, as computed during the handshake phase.
Should either the HMACs mismatch or the SessionSalts not be equal an AUTH ERROR
code is sent, the ERROR LED will blink twice and the session aborted plus discarded. If
the two criteria are met the command is considered valid and will be processed as follows
by invoking the hardware-interface layer of the Arduino platform.

In the current implementation of the RoomControl the following functions are available:
Ping, get room state, unlock door for single entry, keep door unlocked until cancel message
is received and the cancel message for the previous command. Please see Appendix D for
a complete and detailed list of possible commands as well as their function.

6.5 Security

With the RoomControl directly connecting parts of the user’s environment to a network,
security and privacy are immediately major concerns. Where attackers would in the past
need to be physically present to, say, break open the room’s door or find out if the room
is occupied, it is now theoretically possible for attacks to be performed from a remote
location via the network. Possible attacks to be expected include privacy issues (when
and how long are people inside the room), physical security (e.g. the door opened by an
anonymous unauthorized person and items of value stolen from inside the room) as well
as denial-of-service attacks (locking the door permanently to disable use of the room).

The following measures were taken to present a high barrier in terms of effort required

Chapter 6 Interacting with the environment 68

for potential attackers. The effort required to successfully attack the system should be
considerably higher than the actual value of a successful attack. Afterwards a summary of
potential weaknesses is presented in section 6.5.4.

6.5.1 Network security

A possible attack vector is via the RoomControl’s Ethernet connectivity. While it is
good practice to ensure that care is taken to protect the exposure of the RoomControl’s
software interface it is by no means sufficient to rely on this. Often it is simply not possible
to completely protect the information path between the TUManage core service and the
RoomControl modules or, due to the complexity of today’s Internet Protocol (IP) networks,
an attacker could gain access to the path by means of other vulnerable systems, e.g. by
compromising a network switch or firewall. For this reason particular attention has been
given to the RoomControl software security in order for it to still pose a significantly high
barrier for potential attackers, even if network security has been breached.

6.5.2 Software security

The software security layer is generally considered to be the most prone to attack as it
is potentially possible to gain network access to the RoomControl service when network
components outside the scope of TUManage are compromised. The RoomControl software
is controlled by accepting incoming TCP connections from the TUManage core service and
receiving/interpreting binary command messages.

Message authenticity and integrity using HMAC

In order to be certain that the command messages are firstly unmodified during transit
and secondly really originating and from the TUManage core service a HMAC is appended
to every message. It is generated on both sides from the command message and a PSK
which is known only to the RoomControl embedded software and authorized entities like
the TUManage core service. Without the PSK it is practically impossible to generate
the correct HMAC, even if numerous other message-HMAC tupels have been collected for
analysis [27]. The HMAC algorithm uses two stages of hashing where in the first stage
the padded key, XORed with a constant called the ipad, is prepended to the message and
hashed (TUManage uses the SHA-1 hash algorithm). The output is prepended with the
XOR of the padded key and another constant called the opad, whereafter it is hashed again
to produce the output HMAC. The use of two stages prevents an attacker from padding a
malicious input message until it matches a desired HMAC output (hash conflict). Due to
this and the one-way nature of the cryptographic hash function it is practically impossible
to either create or forge the HMAC of a given message without knowledge of the secret PSK

Chapter 6 Interacting with the environment 69

[27]. The RoomControl software therefore can reject any messages not originating from
the TUManage core server or messages which have been tampered with during transit.

Replay attack prevention using a challenge-response protocol and nonce

With the message integrity and authenticity being verified using the HMAC the possibility
or replay attacks, however, would still remain. It would be possible for an attacker to
record all communication to and from the RoomControl until, for example, the command
message to unlock the door can be captured (together with its valid HMAC). At a later
time this message could be sent again to the RoomControl and it would unlock the door
as the HMAC matches the command message.

This form of attack is prevented by means of a challenge-response protocol incorporating
a nonce. Each command message can therefore be practically used only once and only
for a limited amount of time as it is tied to the nonce. This is ensured by creating a
nonce number called SessionSalt which is sent to the client during the session’s handshake.
Every subsequent command message must contain this SessionSalt and it becomes invalid
once a message containing it has been received. No two SessionSalts may be identical
and their value may not be predictable. Because of these constraints the SessionSalt is
very long (62 bytes) and is generated from two values. Firstly, the system timer is used,
which is an internal counter counting the number of milliseconds since the RoomControl’s
microprocessor has been powered up. This number is unique only for about 50 days as
it wraps over to zero on the Arduino platform. The second number used is a non-pseudo
random number generated from analog noise on an unused analog input pin on the Arduino.
During generation of this number the TrueRandom library [28] first sets a noisy voltage
on an IO pin and then measures it, discarding the all but the least significant bits of
the measurement. This is repeated multiple times and de-biased using a von Neumann
whitening algorithm [28]. No seeding/use of internal pseudo-random number generators
is needed as speed performance is not critical while generating the SessionSalt. With the
use of these practically unique and unpredictable nonces it is practically impossible to
successfully perform a replay attack on the RoomControl.

6.5.3 Physical security

All components of the RoomControl need to be mounted on the inside of the door as access
to the control module itself or its hookup wires could otherwise allow it to be manipulated
from the outside. A simple shorting of the main PCB’s power and OUT LOCK pins could
cause the door to be unlocked. Even on the inside of the room some care should be taken
as to not expose the RoomControl control box too easily as a potential attacker could
manipulate the internals to prevent the door from locking or cause it to wrongly unlock at
a later time. This attack is, however, also possible without the RoomControl installed in
a room, by simply manipulating the door itself and/or its locking mechanism.

Chapter 6 Interacting with the environment 70

6.5.4 Considerations for productive use

Two prominent weak points in the RoomControl security concept still remain. They would
provide a starting point for future work and should be considered in productive systems.
Privacy: The network communication to and from the RoomControl is not encrypted and
so, if the network channel were tapped or sniffed, an unauthorized party could monitor use
of the room and its door. (Please note, however, that the communication is safe from modi-
fication, as described in section 6.5.2). A good countermeasure against this attack would be
to physically secure the Ethernet cable to the RoomControl and separate its network logi-
cally from other parts of the LAN, e.g. by means of network switches (which are, however,
also prone to attacks such as Address Resolution Protocol (ARP) flooding) or a Virtual
Private Network (VPN) tunnel if RoomControl traffic needs to traverse unsafe networks.
Denial-Of-Service (DOS): The network connection of the RoomControl can be blocked if
it is accessible to an attacker. As the RoomControl can handle only one session at a time,
an attacker could initiate a session and never send a valid command. If the attacker then
sends incorrect command message start bytes these are ignored but they would prevent the
TCP inactivity timeout from terminating the connection. Sending a byte every few sec-
onds would successfully disable the RoomControl. Countermeasures for this attack would
be logical separation of the LAN the RoomClient is connected to. IP filtering alone could
be circumvented as a valid source IP address could be spoofed by the attacker and pass an
IP filter in one direction, but only this one direction is needed for the attack.

6.6 Actuators and sensors

6.6.1 Lock actuator with visual feedback

The easiest and most reliable method of controlling a door lock is by means of a magneto-
electric strike lock. The lock is built into the door frame and when voltage is applied to
the lock’s terminals, the resulting current through the internal inductor causes a magnetic
field to release the door pin. The door can then be pulled open. Care was taken to use
a strike lock capable of continuous operation, to keep the door unlocked for prolonged
periods of time without damaging the internal inductor. Also, it was required for the lock
to be driven with DC by the driver circuit in order prevent the notorious buzzing sound
when the door is unlocked. This buzzing sound can in some cases actually be useful to
provide feedback that the door is really unlocked because this sound is widely known to the
user from other scenarios. For prolonged unlocking of the door, however, the buzzing noise
is annoying and so a visual feedback mechanism was chosen: A green LED on the door
frame next to the door handle indicates that the door is unlocked when it is lit. In future
applications a perspex door handle could be used together with internal embedded LEDs,
resulting in the handle itself glowing red or green. The strike lock, being an inductive load,

Chapter 6 Interacting with the environment 71

has a suppressor diode fitted in reverse, parallel to the inductor, to prevent voltage spikes
back to the driver circuit when current is suddenly removed.

6.6.2 Door state sensor

The state of the door (i.e. open or closed) is detected using a magnetic reed relay. The
element is mounted on the door frame and the corresponding magnet on the door. If the
door is closed, the proximity of the magnet pulls the reed relay to close a circuit, which
is attached to the RoomControl IO board. Here, a pull-up resistor provokes the necessary
voltage drop which can be measured by the Arduino’s analog input. The input threshold
is set in software to half the supply voltage of 5V.

6.7 Installation

The RoomControl prototype was first installed in one of TUM’s lecture/seminar rooms for
testing and initial usability evaluation. A card reader access control module connected to
a strike lock was already installed by the building administration so it was decided to wire
the RoomControl in parallel to the existing system. This means that the two unit’s grounds
were connected, the existing module’s 12V powersupply used to supply the RoomControl
and the RoomControl’s OUT LOCK output also connected to the door strike lock (in
parallel to the existing system). The RoomControl box was wall-mounted next to the
other system with the status LEDs clearly visible. An Ethernet cable was put into existing
cable trunking and now connects the RoomControl to a nearby Ethernet switch, attaching
it to a dedicated ubiquitous-computing LAN shared by other projects’ components like the
room’s digital projectors. Network access rules for the TUManage core server to reach the
RoomControl were added to the dedicated LAN’s firewall.

6.8 Future considerations

6.8.1 Scaling

In future applications, multiple RoomControl modules could be used in any one room to
act as sensors/actuators for their parent ubiquitous systems. Reasons for splitting the
work among multiple devices could be due to logical and/or physical separation of the
parts of the environment they interact with. An example for physical separation would be
if a single RoomControl module were to be used to control multiple doors across the room.
A single module could be used at the expense of running additional thick cables to each

Chapter 6 Interacting with the environment 72

Figure 6.8: Photo of RoomControl prototype installation, cover removed

Chapter 6 Interacting with the environment 73

door for the strike lock and status sensors, while one would on the other hand only need
to run an Ethernet network feed to each door with its own RoomControl module.

6.8.2 Audit

For productive systems it could potentially be useful to provide a robust and secure means
of auditing the system’s use. This could be done by attaching a Secure Digital (SD)-card
to the Arduino platform via one of the numerous shields available for this use. Every
transaction handled by the RoomControl would then be logged to the SD-card and be
untamperable even if the network communication or the cryptographic keys were compro-
mised. Provided, of course, the embedded software is secure (low risk) and the RoomCon-
trol module is physically secure (hard to achieve once attacker has gained access to the
room).

6.8.3 Robot Operating System

Related work exists ([25]) where similar devices run a standard middleware, the Robot
Operating System (ROS). The currently very simple embedded software running on the
RoomControl microprocessor could be replaced by a more powerful platform with ROS
handling tasks such as low-level device abstraction and high-level message passing in a
standard and much more scalable fashion. Compatibility with other, future work should
be easier and more easily scalable if a standardized framework were used.

Chapter 7

Conclusion

7.1 Summary

This thesis identified the opportunity to assist with the efficient and convenient use of
shared room resources by providing a system based on state-of-the-art research in the field
of ubiquitous computing. Mechanisms for interactivity with the user were designed and
implemented with special attention given to usability and security. The problem of user
authentication with the system was solved using a novel approach where the user session on
an unsecured terminal is temporarily moved to a secure environment (the user’s personal
smartphone) while the credentials are supplied to the system. Mechanisms were imple-
mented to ensure confidentiality, two-way authenticity, integrity and non-repudiation. A
scalable infrastructure was created in order to provide a robust and homogeneous expe-
rience to the user, plus enable the possibility of wide-spread deployment in a productive
environment, where cost, management and maintenance overhead become important. It
was proposed that the infrastructure requirements are best met using current web compo-
nents plus architectures like SOA and design styles like REST. Software was designed and
written for this server infrastructure and interative smart door signs based on tablet com-
puters. Hardware was developed and built for the system to interact with the user’s phys-
ical environment, using a low-cost embedded rapid-prototyping microprocessor platform.
In the practical part of this thesis a complete prototype of the system was implemented in
both hardware and software. It was installed in one of the lecture rooms at TUM where
the system is available for evaluation and as a starting point for future work.

7.2 Outlook

7.2.1 Productive use

Where possible, the TUManage architecture was kept as open and generic as possible with
many tight interfaces and a modular approach, thanks to a SOA architecture and the use

74

Chapter 7 Conclusion 75

of design patterns like MVC and layers, for example. This should make additions and
enhancements to the system possible without complicated workarounds and compromises.
Before the system is ready to be put to productive use, however, certain aspects still need
to be addressed, like for example,

Integration

The integration with existing systems like TUMonline and TUM LDAP SSO are not using
productive interfaces in our prototype implementation. Care needs to be taken to ensure
robust operation of these interfaces.

Administration

While this thesis placed a lot of emphasis on the usability of the frontend interfaces the
backend administration interfaces are still very simple and sparse. Once non-technical room
administrators need to operate and administer the system an intuitive and more powerful
backend interface would need to be implemented, taking into account the exact needs
of room administrators. Possible features requested could be integration with existing,
private room management systems or more advanced user management with fine-grained
permissions control over reservations and room use.

Hardware infrastructure

While the server infrastructure used for the prototype implementation is by far sufficient
for prototype use it will probably not meet the expectations of a large-scale productive
system. Administrative overhead is required for keeping the server environment running
and secure. It is therefore advised to move the server infrastructure to a hosting solution
where dedicated personnel ensure hardware availability and server operating system secu-
rity, like for example the TUM’s IT service department LRZ. Also, hardware maintenance
overhead is required to ensure the smooth operation of the WallClient and RoomControl
devices.

7.2.2 Multiplication

While TUManage was conceptualized to manage shared rooms, it quickly became appar-
ent during the design phase that the system could be used to manage many other kinds of
shared resources as well, notably physical objects. Care was taken to keep many compo-
nents of the system as generic as possible (which is a good design trait in itself) in order
to potentially adapt or port the system for application in other scenarios, which could be
the basis for future work.

Appendix A

Core backend service resources

This appendix gives a list of some reseources offering service on the TUManage core back-
end. For the complete list please consult the documentation and the web.xml file provided
in the practical part of this thesis.

76

Appendix A Core backend service resources 77

DbConnection.resource
Description: Used to check availability of a connection to the DBMS.
URI: https://tueivmi-service.lmt.ei.tum.de/TUManage/admin/

DbConnection.resource

GET Method
— Parameters: none
— Return code: 200 OK if the DBMS connection is present, else 500 INTER-

NAL SERVER ERROR
— Returned data: Human-readable success or error message.
— MIME type: text/plain

SyncRooms.do
Description: Trigger synchronization of room data with TUMonline.
URI: https://tueivmi-service.lmt.ei.tum.de/TUManage/admin/

SyncRooms.do

GET Method
— Parameters: none
— Return code: 200 OK
— Returned data: Basic admin UI to assemble a POST request.
— MIME type: application/xhtml+xml
POST Method
— Parameters: none
— Return code: 200 OK on success
— Returned data: Human-readable log of transaction.
— MIME type: text/plain
SyncRoomEvents.do
Description: Trigger synchronization of room event data with TUMonline.
URI: https://tueivmi-service.lmt.ei.tum.de/TUManage/admin/

SyncRoomEvents.do

GET Method
— Parameters: none
— Return code: 200 OK
— Returned data: Basic admin UI to assemble a POST request.
— MIME type: application/xhtml+xml
POST Method
— Parameters: sapRoomID (ID of the room to sync), fromDate (date from when

to sync, in format YYYYMMDD), untilDate (date until when to
sync, inclusive)

— Return code: 200 OK on success
— Returned data: Human-readable log of transaction.
— MIME type: text/plain

Table A.1: Sample of administrative services/resources

https://tueivmi-service.lmt.ei.tum.de/TUManage/admin/DbConnection.resource
https://tueivmi-service.lmt.ei.tum.de/TUManage/admin/DbConnection.resource
https://tueivmi-service.lmt.ei.tum.de/TUManage/admin/SyncRooms.do
https://tueivmi-service.lmt.ei.tum.de/TUManage/admin/SyncRooms.do
https://tueivmi-service.lmt.ei.tum.de/TUManage/admin/SyncRoomEvents.do
https://tueivmi-service.lmt.ei.tum.de/TUManage/admin/SyncRoomEvents.do

Appendix A Core backend service resources 78

Room.resource
Description: GET or POST information about a room.
URI: https://tueivmi-service.lmt.ei.tum.de/TUManage/

resources/Room.resource

GET Method
— Parameters: roomSapID (the room’s unique ID)
— Return code: 200 OK
— Returned data: JSON data structure containing information about the room itself.
— MIME type: text/json
RoomEvent.resource
Description: GET a room’s event list or POST a new event (reservation)
URI: https://tueivmi-service.lmt.ei.tum.de/TUManage/

resources/RoomEvent.resource

GET Method
— Parameters: roomSapID (the room’s unique ID), fromTime and toTime (from

which timespan should events be returned)
— Return code: 200 OK
— Returned data: JSON data structure containing a list of events including event

details.
— MIME type: text/json
POST Method
— Parameters: see code documentation as there are numerous (optional) parame-

ters
— Return code: 200 OK on success, 500 INTERNAL SERVER ERROR on failure,

403 FORBIDDEN if such a reservation may not be placed
— Returned data: JSON data structure containing newly created event or error mes-

sage of failure
— MIME type: text/json
RoomLock.resource
Description: URI representing the room’s lock to GET it’s state or POST to

unlock/lock the room.
URI: https://tueivmi-service.lmt.ei.tum.de/TUManage/

resources/RoomEvent.resource

GET Method
— Parameters: roomSapID (the room’s unique ID)
— Return code: 200 OK
— Returned data: JSON data structure containing the current state of the door and

lock, including the current timestamp.
— MIME type: text/json
POST Method
— Parameters: roomSapID (the room’s unique ID), openMode (”single” to open

the door for one person to enter, ”prolonged” to keep the door open
for prolongedTime, which specified in seconds)

— Return code: 200 OK on success, 500 INTERNAL SERVER ERROR on failure,
403 FORBIDDEN if the current user may not unlock the door

— Returned data: JSON data structure containing the current state of the door and
lock, including the current timestamp.

— MIME type: text/json

Table A.2: Sample of room management resources

https://tueivmi-service.lmt.ei.tum.de/TUManage/resources/Room.resource
https://tueivmi-service.lmt.ei.tum.de/TUManage/resources/Room.resource
https://tueivmi-service.lmt.ei.tum.de/TUManage/resources/RoomEvent.resource
https://tueivmi-service.lmt.ei.tum.de/TUManage/resources/RoomEvent.resource
https://tueivmi-service.lmt.ei.tum.de/TUManage/resources/RoomEvent.resource
https://tueivmi-service.lmt.ei.tum.de/TUManage/resources/RoomEvent.resource

Appendix A Core backend service resources 79

Reservation.client.resource
Description: Serves an instance of the HTML5/JavaScript room reservation

client.
URI: https://tueivmi-service.lmt.ei.tum.de/TUManage/

resources/WallClient/Reservation.client.resource

GET Method
— Parameters: none
— Return code: 200 OK
— Returned data: In instance of the reservation client
— MIME type: application/xhtml+xml

Table A.3: Sample of WallClient code-on-demand resource

https://tueivmi-service.lmt.ei.tum.de/TUManage/resources/WallClient/Reservation.client.resource
https://tueivmi-service.lmt.ei.tum.de/TUManage/resources/WallClient/Reservation.client.resource

Appendix B

RoomControl BOM

The following table B.1 lists the BOM required to assemble a RoomControl device. Prices
listed are the costs incurred while building prototype 1 and 2. Some priced are listed as
zero because the components have negligible lost and parts could be salvaged from our
lab’s junk box.

80

Appendix B RoomControl BOM 81

P
ar

en
t

C
o

m
p

o
n

en
t

ID
C

o
m

p
o

n
en

t
Q

ty
So

u
rc

e
P

ar
t

N
u

m
b

er
P

ri
ce

To
ta

l

H
o

o
ku

p
 (

p
o

w
e

r)
P

SU
1

P
o

w
e

r
Su

p
p

ly
, 1

2
V

 r
eg

u
la

te
d

, 2
A

m
p

1
R

S
6

7
8

-3
9

2
5

1
4

,9
9

 €
1

4
,9

9
 €

H
o

o
ku

p
 (

p
o

w
e

r)
-

M
ai

n
s

ca
b

le
 f

o
r

p
o

w
e

r
su

p
p

ly
1

R
ei

ch
el

t
A

D
C

 1
2

0
 S

W
1

,0
5

 €
1

,0
5

 €

M
o

u
n

ti
n

g
-

C
as

in
g

fo
r

P
C

B
, 1

3
4

x1
2

9
x6

1
m

m
1

R
ei

ch
el

t
TE

K
O

 0
2

2
9

,2
5

 €
9

,2
5

 €

Lo
ck

C
o

n
tr

o
lP

C
B

-
P

C
B

 p
ro

to
ty

p
e

b
o

ar
d

 -
 2

,5
4

m
m

0
,2

5
R

S
2

0
6

-5
8

4
1

3
,5

6
 €

0
,8

9
 €

Lo
ck

C
o

n
tr

o
lP

C
B

T1
2

N
2

2
2

2
 t

ra
n

si
st

o
r

1
R

S
5

4
4

-9
6

2
4

0
,1

6
 €

0
,1

6
 €

Lo
ck

C
o

n
tr

o
lP

C
B

S1
R

el
ay

, D
P

D
T,

 5
V

1
R

S
1

0
2

-4
9

0
9

,6
9

 €
9

,6
9

 €

Lo
ck

C
o

n
tr

o
lP

C
B

D
1

D
io

d
e

1
0

,0
0

 €

Lo
ck

C
o

n
tr

o
lP

C
B

LE
D

1
, L

ED
2

LE
D

, g
re

en
, 3

m
m

2
0

,0
0

 €

Lo
ck

C
o

n
tr

o
lP

C
B

LE
D

3
LE

D
, r

ed
, 3

m
m

1
0

,0
0

 €

Lo
ck

C
o

n
tr

o
lP

C
B

R
1

,R
2

,R
3

R
es

is
to

r
1

0
0

R
3

0
,0

0
 €

Lo
ck

C
o

n
tr

o
lP

C
B

R
4

R
es

is
to

r
2

k2
1

0
,0

0
 €

Lo
ck

C
o

n
tr

o
lP

C
B

IC
1

V
o

lt
ag

e
R

eg
u

la
to

r,
 h

ig
h

-e
ff

ic
ie

n
cy

, i
n

d
u

ct
iv

e,
 5

V
1

R
S

6
7

2
-7

1
2

4
6

,9
9

 €
6

,9
9

 €

Lo
ck

C
o

n
tr

o
lP

C
B

J1
,J

2
Te

rm
in

al
 H

ea
d

er
, 2

-p
o

le
2

0
,0

0
 €

Lo
ck

C
o

n
tr

o
lP

C
B

J3
P

in
 H

ea
d

er
 S

o
ck

e
t,

 6
-p

o
le

1
0

,0
0

 €

Lo
ck

C
o

n
tr

o
lP

C
B

C
1

C
ap

ac
it

o
r,

 e
le

ct
ro

ly
te

, 1
0

0
u

F,
 1

0
V

1
R

S
0

,0
0

 €

H
o

o
ku

p
-

R
ib

b
o

n
 c

ab
le

, 6
-p

o
le

1
0

,0
0

 €

H
o

o
ku

p
-

P
in

 H
ea

d
er

, s
o

ld
er

ab
le

, 6
-p

o
le

2
0

,0
0

 €

H
o

o
ku

p
-

P
in

 H
ea

d
er

, s
o

ld
er

ab
le

, 8
-p

o
le

1
0

,0
0

 €

H
o

o
ku

p
-

H
o

o
ku

p
 c

ab
le

 f
o

r
lo

ck
1

0
,0

0
 €

O
p

ti
o

n
al

:

Lo
ck

C
o

n
tr

o
lP

C
B

LE
D

1
,L

ED
2

LE
D

, g
re

en
, c

as
e

m
o

u
n

t
2

R
ei

ch
el

t
LE

D
 1

0
3

 A
 G

N

LE
D

3
LE

D
, r

ed
, c

as
e

m
o

u
n

t
1

R
ei

ch
el

t
LE

D
 1

0
3

 A
 R

T

To
ta

l B
O

M
4

3
,0

2
 €

Figure B.1: RoomControl BOM

Appendix C

Arduino UNO schematics

82

Appendix C Arduino UNO schematics 83

A
TM

E
G

A
8

IC
S

P

+5
V

G
N

D
+5

V

+5
V

G
N

D

G
N

D

G
N

D

+5
V

G
N

D

10
0n

G
N

D

47
u

47
u

G
N

D
G

N
D

G
N

D

G
N

D

G
R

E
E

N

GND

+5
V

Y
E

LL
O

W

Y
E

LL
O

W

M
7

G
N

D
M

C
33

26
9D

-5
.0

M
C

33
26

9S
T-

5.
0T

3

10
0n

G
N

D

50
0m

A

+5
V

+5
V

10
0n

G
N

D

YELLOWG
N

D

FDN304V

+5
V

LM
35

8D
LM

35
8D

G
N

D
G

N
D

+5
V

10
0n

+5
V

A
TM

E
G

A
8U

2-
M

U

G
N

D

100n

IC
S

P

+5
V

G
N

D

G
N

D

16
M

H
z

16
M

H
z

GND

PGB1010604

PGB1010604

BLM21

1M

1K

1K

1K1K

G
N

D

10K

10K

10K

10K

10
0n

1u

1K1K

1K1K

22
R

22
R

22
R

22
R

1u

1M

16MHz

16MHz

TS42

22p 22p

22p 22p

GND

GND

G
N

D

27R

(A
D

C
5)

P
C

5
28

(A
D

C
4)

P
C

4
27

(A
D

C
3)

P
C

3
26

(A
D

C
2)

P
C

2
25

(A
D

C
1)

P
C

1
24

(A
D

C
0)

P
C

0)
23

(S
C

K
)P

B
5

19

(M
IS

O
)P

B
4

18

(M
O

S
I)

P
B

3
17

(S
S

)P
B

2
16

(O
C

1)
P

B
1

15

(I
C

P
)P

B
0

14

(A
IN

1)
P

D
7

13

(A
IN

0)
P

D
6

12

(T
1)

P
D

5
11

(T
0)

P
D

4
6

(I
N

T1
)P

D
3

5

(I
N

T0
)P

D
2

4

(T
X

D
)P

D
1

3

(R
X

D
)P

D
0

2

G
N

D
8

V
C

C
7

A
V

C
C

20
A

R
E

F
21

X
TA

L1
9

X
TA

L2
10

R
E

S
E

T
1

A
G

N
D

22

ZI
C

1

1
2

3
4

5
6

IC
S

P

12345678

IO
L

12345678

IO
H

123456

A
D

C
2

P
C

1
P

C
2

O
N

R
X

TX

D
1

1 1

2 2

3
3

1 2 3 4

P$1 P$1
P$2 P$2

X
2

V
I

3

1

V
O

2

IC
2

A
D

J

1

IN
3

O
U

T
4 2

IC
1

1 2 3 4 5 6

P
O

W
E

R

C
4

F1

C
7

L

T1

23
1

U
1A

65
7

U
1B

8 4
C

1

(P
C

IN
T9

/O
C

1B
)P

C
5

25

(P
C

IN
T1

0)
P

C
4

26

(I
N

T4
/IC

P
1/

C
LK

0)
P

C
7

22

(O
C

1A
/P

C
IN

T8
)P

C
6

23

(A
IN

2/
P

C
IN

T1
1)

P
C

2
5

(P
C

IN
T5

)P
B

5
19

(T
1/

P
C

IN
T4

)P
B

4
18

(P
D

0/
M

IS
O

/P
C

IN
T3

)P
B

3
17

(P
D

I/M
O

S
I/P

C
IN

T2
)P

B
2

16

(S
C

LK
/P

C
IN

T1
)P

B
1

15

(S
S

/P
C

IN
T0

)P
B

0
14

(C
TS

/H
W

B
/A

IN
6/

TO
/IN

T7
)P

D
7

13

(R
TS

/A
IN

5/
IN

T6
)P

D
6

12

(X
C

K
/A

IN
4/

P
C

IN
T1

2)
P

D
5

11

(I
N

T5
/A

IN
3)

P
D

4
10

(T
X

D
1/

IN
T3

)P
D

3
9

(R
X

D
1/

A
IN

1/
IN

T2
)P

D
2

8

(A
IN

0/
IN

T1
)P

D
1

7

(O
C

0B
/IN

T0
)P

D
0

6

G
N

D
3

V
C

C
4

A
V

C
C

32

U
V

C
C

31

X
TA

L1
1

X
TA

L2
(P

C
0)

2

R
E

S
E

T(
P

C
1/

D
W

)
24

U
G

N
D

28

U
3 P

A
D

E
X

P

U
C

A
P

27

D
-

30

D
+

29

(P
C

IN
T6

)P
B

6
20

(P
C

IN
T7

/O
C

0A
/O

C
1C

)P
B

7
21

C5

1
2

3
4

5
6

IC
S

P
1

Y
2

Y
1

2
1

U
B

O
O

T

Z1

Z2

2
1

G
R

O
U

N
D

L1

2
1

R
E

S
E

T-
E

N R
2

1 8
RN2A

2 7
RN2B

3
6

R
N

2C4
5

R
N

2D

1 8RN1A27

RN1B

3 6RN1C

45

RN1D

C
6

C
8

1
8

R
N

4A2
7

R
N

4B

3
6

R
N

4C

4
5

R
N

4D

1
8

R
N

3A

2
7

R
N

3B

3
6

R
N

3C

4
5

R
N

3D

C
3

R
1

2 1

Q1

2 1

Q2

13
4 2

RESET

5

C10 C12

C9 C11

IN
1

E
N

3

N
C

/F
B

4

O
U

T
5

G
N

D
2

R3

+5
V

+5
V

G
N

D

A
R

E
F

A
R

E
F

R
E

S
E

T

R
E

S
E

T

V
IN

V
IN

V
IN

M
8R

X
D

M
8R

X
D

M
8T

X
D

M
8T

X
D

S
C

K

P
W

R
IN

D
-

D
+

+3
V

3

+3
V

3

+3
V

3

M
IS

O
M

O
S

I
S

S

S
S

DTR

G
A

TE
_C

M
D

C
M

P

U
S

B
V

C
C

U
S

B
V

C
C

U
S

B
V

C
C

X
TA

L2

X
TA

L2

X
TA

L1

X
TA

L1

V
U

C
A

P

R
D

-

R
D

-

R
D

+

R
D

+

R
E

S
E

T2

M
IS

O
2

M
O

S
I2

S
C

K
2

U
S

H
IE

LD

UGND

U
G

N
D

X
U

S
B

X
T2

X
T2

X
T1

X
T1

R
X

LE
D

TX
LE

D

A
D

0
A

D
1

A
D

2
A

D
3

A
D

4
A

D
5

IO
2

IO
1

IO
0

IO
3

IO
4

IO
5

IO
6

IO
7

IO
8

IO
9

X
T1

R

+

+

USB

01234567

8910111213

A
rd

ui
no

 U
N

O
 R

ef
er

en
ce

 D
es

ig
n

U
S

B
 b

oo
t E

n

TM

R
ef

er
en

ce
 D

es
ig

ns
 A

R
E

 P
R

O
V

ID
E

D
 "

A
S

 IS
"

A
N

D
 "

W
IT

H
 A

LL
 F

A
U

LT
S

".
 A

rd
ui

no
 D

IS
C

LA
IM

S
 A

LL
 O

TH
E

R
 W

A
R

R
A

N
TI

E
S

, E
X

P
R

E
S

S
 O

R
 IM

P
LI

E
D

,

A
rd

ui
no

 m
ay

 m
ak

e
ch

an
ge

s
to

 s
pe

ci
fic

at
io

ns
 a

nd
 p

ro
du

ct
 d

es
cr

ip
tio

ns
 a

t a
ny

 ti
m

e,
 w

ith
ou

t n
ot

ic
e.

 T
he

 C
us

to
m

er
 m

us
t n

ot

R
E

G
A

R
D

IN
G

 P
R

O
D

U
C

TS
, I

N
C

LU
D

IN
G

 B
U

T
N

O
T

LI
M

IT
E

D
 T

O
, A

N
Y

 IM
P

LI
E

D
 W

A
R

R
A

N
TI

E
S

 O
F

M
E

R
C

H
A

N
TA

B
IL

IT
Y

 O
R

 F
IT

N
E

S
S

 F
O

R
 A

 P
A

R
TI

C
U

LA
R

 P
U

R
P

O
S

E

re
ly

 o
n

th
e

ab
se

nc
e

or
 c

ha
ra

ct
er

is
tic

s
of

 a
ny

 fe
at

ur
es

 o
r i

ns
tru

ct
io

ns
 m

ar
ke

d
"r

es
er

ve
d"

 o
r "

un
de

fin
ed

."
 A

rd
ui

no
 re

se
rv

es
th

es
e

fo
r f

ut
ur

e
de

fin
iti

on
 a

nd
 s

ha
ll

ha
ve

 n
o

re
sp

on
si

bi
lit

y
w

ha
ts

oe
ve

r f
or

 c
on

fli
ct

s
or

 in
co

m
pa

tib
ili

tie
s

ar
is

in
g

fro
m

 fu
tu

re
 c

ha
ng

es
 to

 th
em

.
Th

e
pr

od
uc

t i
nf

or
m

at
io

n
on

 th
e

W
eb

 S
ite

 o
r M

at
er

ia
ls

 is
 s

ub
je

ct
 to

 c
ha

ng
e

w
ith

ou
t n

ot
ic

e.
 D

o
no

t f
in

al
iz

e
a

de
si

gn
 w

ith
 th

is
 in

fo
rm

at
io

n.

Figure C.1: Arduino UNO schematic (Source: arduino.cc)

Appendix D

RoomControl message commands

The following is a list of commands supported by the RoomControl device. Please see
Chapter 6 for more details. All commands will return at least one response, on a newline
terminated line, but all commands will eventually return the response OK or ERROR to
indicate the command has finished processing, and with what status.

CMD TEST
Message byte: t
Description: A simple command to test and ensure communication with the

embedded device is functioning.
Parameters: None
Hardware action: None
Responses: The default OK line

CMD OPEN
Message byte: o
Description: Used to unlock the door for a single entry. Depending on the strike

lock mechanism in use, the striker will be energized for 3 seconds
in order to allow the user to pull the door open.

Parameters: None
Hardware action: Sets the OUT LOCK output to HIGH for 3 seconds for the door

to be opened.
Responses: First the response BZZZZZZ is sent to indicate that the door is

being unlocked. Once the entry transaction has completed the usual
OK is sent.

84

Appendix D RoomControl message commands 85

CMD PROLONGED UNLOCK
Message byte: p
Description: Puts the device into the prolonged-unlock state which will keep the

door unlocked until the command to cancel the prolonged-unlock is
received. During this phase CMD OPEN commands are ignored.

Parameters: None
Hardware action: Sets the OUT LOCK output to HIGH.
Responses: The response for this command is PRO-

LONGED UNLOCK ACTIVE and then OK as an acknowl-
edgement.

CMD PROLONGED UNLOCK CANCEL
Message byte: q
Description: Cancels the prolonged-unlock state, otherwise the command is ig-

nored.
Parameters: None
Hardware action: Sets the OUT LOCK output to LOW.
Responses: The response for this command is PRO-

LONGED UNLOCK INACTIVE followed by OK.

CMD STATE
Message byte: s
Description: This command is used to request the state of the door to be served.
Parameters: None
Hardware action: If applicable, the state of the door will be sensed via the analog

input IN DOORSTATE.
Responses: Two lines will be returned, the first one either OPEN or

CLOSED, according to the state of the door, and the sec-
ond line either PROLONGED UNLOCK ACTIVE or PRO-
LONGED UNLOCK INACTIVE, according to the state of the
lock.

Table D.1: Commands available on the RoomControl embedded device

Appendix E

Abbreviations

TUM Technische Universität München

PC Personal Computer

WSN Wireless Sensor Network

AJAX Asynchronous JavaScript and XML

REST Representational State Transfer

API Application Program Interface

UI User Interface

DC Direct Current

LED Light Emitting Diode

SPI Serial Peripheral Interface

IDE Integrated Development Environment

ROS Robot Operating System

SD Secure Digital

TCP Transmission Control Protocol

UDP Universal Datagram Protocol

PSK Pre-shared Key

ASCII American Standard Code for Information Interchange

HMAC Keyed-Hash Message Authentication Code

POST Power-On Self Test

PCB Printed Circuit Board

HMAC keyed-Hash Message Authentication Code

86

Appendix E Abbreviations 87

DOS Denial-Of-Service

USB Universal Serial Bus

PSU Power Supply Unit

BOM bill of materials

PWM Pulse Width Modulation

GUI Graphical User Interface

IO Input/Output

IP Internet Protocol

nonce number only used once

LAN Local Area Network

VPN Virtual Private Network

ARP Address Resolution Protocol

REST Representational State Transfer

URI Uniform Resource Identifier

JSON JavaScript Object Notation

XML Extensible Markup Language

DBMS Database Management System

HTTP Hypertext Transfer Protocol

HTML Hypertext Markup Language

CRUD Create Read Update Delete

MVC Model-View-Controller

QR Quick Response

ORM object-relational mapping

JDBC Java Database Connectivity

SOA Service Oritented Architecture

RPC remote procedure call

SQL Structured Query Language

HTTPS Hypertext Transfer Protocol Secure

JSP Java Server Page

Appendix E Abbreviations 88

SSL Secure Sockets Layer

TLS Transport Layer Security

WLAN Wireless LAN

DOM Document Object Model

CSS Cascading Style Sheets

AJP Apache JServ Protocol

SSO single sign-on

MC Mobile Client

PKI public key infrastructure

URL Uniform Resource Locator

LDAP Lightweight Directory Access Protocol

CA Certificate Authority

JDO Java Data Objects

JPA Java Persistence API

List of Figures

3.1 Participant role at the TUM . 11
3.2 Mobile phone Internet usage . 12
3.3 Mobile phone services usage . 13
3.4 Current TUM online services usage . 13
3.5 Desired TUM online services usage . 14
3.6 Satisfaction levels about room situation . 15
3.7 Reasons for not using rooms . 16

4.1 Emergency view (shown in the event of a power failure) 21
4.2 Throbber animation . 23
4.3 NavBar navigation metaphor . 24
4.4 High-level state diagram of application state 26
4.5 The schedule view with some sample events 28
4.6 Icon hinting touch action to show information 29
4.7 Subview sequence while placing a reservation 31
4.8 Reserving a room, step 1 . 32
4.9 Reserving a room, step 2 . 32
4.10 Reserving a room, step 3 . 33
4.11 Reserving a room, step 4 . 33
4.12 Reserving a room, step 5 . 34
4.13 Sequence diagram of user authentification using MobileClient session

through AuthService . 35
4.14 Step 1: QR code is displayed on WallClient 37
4.15 Step2: QR code scan opens MC AuthUI 38
4.16 Step3: Username is entered and appears on WallClient while the user types

on the smartphone . 38
4.17 Step 4: Authentication succeeded displayed on the smartphone 39
4.18 Step 5: Authentication success displayed on the WallClient, session is now

authenticated . 39
4.19 SSL handshake sequence diagram (Source: [27]) 41

5.1 High-level architecture of core backend in global context of the whole system 43
5.2 Entity-relationship model or implemented database schema 52
5.3 Data flow diagram of one-way sync with TUMOnline 54

89

LIST OF FIGURES 90

6.1 RoomControl box (opened lid) with prototype 2 circuit board, Arduino and
Ehternet shield . 58

6.2 Architecture of the RoomControl . 58
6.3 Arduino UNO (Source: Wikimedia Commons, CC-license) 59
6.4 RoomControl circuit board schematic . 60
6.5 RoomControl prototype 1 circuit board . 61
6.6 Flowchart of RoomControl embedded software 65
6.7 Sequence diagram for challenge-response protocol using a nonce 66
6.8 Photo of RoomControl prototype installation, cover removed 72

B.1 RoomControl BOM . 81

C.1 Arduino UNO schematic (Source: arduino.cc) 83

List of Tables

6.1 RoomControl power supply requirements 60
6.2 RoomControl LED status codes . 63
6.3 RoomControl message format . 67

A.1 Sample of administrative services/resources 77
A.2 Sample of room management resources . 78
A.3 Sample of WallClient code-on-demand resource 79

D.1 Commands available on the RoomControl embedded device 85

91

Bibliography

[1] Apache httpd web server. http://httpd.apache.org/,

[2] jQuery JavaScript library. http://jquery.com/,

[3] jQueryMobile JavaScript framework. http://jquerymobile.com/,

[4] JSON - JavaScript Object Notation. http://json.org/,

[5] myBatis ORM data mapper framework. http://www.mybatis.org/,

[6] MySQL Database Management System. http://www.mysql.com/,

[7] Spring Application Framework. http://www.springsource.org/,

[8] Surveymonkey online surveys. http://www.surveymonkey.com/,

[9] TUM corporate design specification. http://portal.mytum.de/corporatedesign,

[10] Usability First - HCI Design Approaches. http://www.usabilityfirst.com/

usability-methods/hci-design-approaches/,

[11] HTTP Authentication: Basic and Digest Access Authentication. http://www.ietf.

org/rfc/rfc2617.txt, 1999

[12] Arduino Platform. http://arduino.cc/, 2011

[13] Wiring platform. http://wiring.org.co/about.html, 2011

[14] Apache Software Foundation: Apache Tomcat. http://tomcat.apache.org/,

[15] Chen, Peter P.: The Entity-Relationship Model: Toward a Unified View of Data. In:
ACM Transactions on Database Systems 1 (1976), S. 9–36

[16] Fielding, Roy T.: Architectural Styles and the Design of Network-based Software
Architectures. Irvine, California, University of California, Diss., 2000

[17] Freeman, Eric T. ; Robson, Elisabeth ; Bates, Bert ; Sierra, Kathy ; Me-
dia, O’Reilly (Hrsg.): Head First Design Patterns. O’Reilly Media, 2004. – ISBN
9780596007126

[18] Google: Android At Home Framework, public preview. http://www.google.com/

events/io/2011/index-live.html, 2011

92

http://httpd.apache.org/
http://jquery.com/
http://jquerymobile.com/
http://json.org/
http://www.mybatis.org/
http://www.mysql.com/
http://www.springsource.org/
http://www.surveymonkey.com/
http://portal.mytum.de/corporatedesign
http://www.usabilityfirst.com/usability-methods/hci-design-approaches/
http://www.usabilityfirst.com/usability-methods/hci-design-approaches/
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt
http://arduino.cc/
http://wiring.org.co/about.html
http://tomcat.apache.org/
http://www.google.com/events/io/2011/index-live.html
http://www.google.com/events/io/2011/index-live.html

BIBLIOGRAPHY 93

[19] Kemper, Alfons ; Eickler, Andre: Datenbanksysteme. Eine Einführung. Olden-
bourg Verlag, 2004. – ISBN 9783486273922

[20] Krumm, John: Ubiquitous Computing Fundamentals. 1st. Chapman & Hall/CRC,
2009. – ISBN 1420093606, 9781420093605

[21] Kuniavsky, Mike: Smart Things: Ubiquitous Computing User Experience Design.
Morgan Kaufmann, 2010. – ISBN 9780123748997

[22] Mattern, Friedemann ; Flörkemeier, Christian: Vom Internet der Computer
zum Internet der Dinge. In: Informatik-Spektrum 33 (2010), 107-121. http://dx.

doi.org/10.1007/s00287-010-0417-7. – ISSN 0170–6012. – 10.1007/s00287-010-
0417-7

[23] Norman, Donald A.: The Design of Everyday Things. Basic Books, 1988. – ISBN
9780465067107

[24] Oracle: Java Platform, Enterprise Edition. http://www.oracle.com/

technetwork/java/javaee/overview/index.html,

[25] Roalter, Luis ; Kranz, Matthias ; Möller, Andreas: A Middleware for Intelligent
Environments and the Internet of Things. 2010

[26] Schlichter, Johann: Distributed Applications - Verteilte Anwendungen. 2008

[27] Swoboda, Joachim ; Spitz, Stefan ; Pramateftakis, Michael: Kryptographie und
IT-Sicherheit. 1st. Vieweg + Teubner Verlag, 2008

[28] TinkerIt: TrueRandom for Arduino. http://code.google.com/p/tinkerit/

wiki/TrueRandom/, 2011

[29] Weiser, Marc: Ubiquitous Computing. http://www.ubiq.com/ubicomp/, 1996

[30] Weiser, Mark ; Brown, John S.: The coming age of Calm Technology. (1996)

[31] York, Judy ; Pendharkar, Parag C.: Human computer interaction issues for
mobile computing in a variable work context. In: International Journal of Human-
Computer Studies 60 (2004), Nr. 5-6, 771 - 797. http://dx.doi.org/10.1016/j.

ijhcs.2003.07.004. – DOI 10.1016/j.ijhcs.2003.07.004. – ISSN 1071–5819

http://dx.doi.org/10.1007/s00287-010-0417-7
http://dx.doi.org/10.1007/s00287-010-0417-7
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://code.google.com/p/tinkerit/wiki/TrueRandom/
http://code.google.com/p/tinkerit/wiki/TrueRandom/
http://www.ubiq.com/ubicomp/
http://dx.doi.org/10.1016/j.ijhcs.2003.07.004
http://dx.doi.org/10.1016/j.ijhcs.2003.07.004

	Contents
	Introduction
	Motivation
	Outline

	Related work
	Ubiquitous computing
	Terminology
	Usability
	Interactivity
	Future

	User study
	User interviews
	Online survey
	Outcome

	WallClient displays
	Overview
	Hardware platform
	Hardware requirements
	Android platform
	Connectivity
	Operating-system lockdown
	Software deployment
	Anti-theft measures
	Building safety requirements

	Design principles
	Simplicity, Clarity, Flexibility
	Visibility
	Conceptual Model
	Feedback
	Metaphoric Design

	User interface implementation
	Navigation
	Native domain vs. code-on-demand domain
	UI overview
	Now View
	Schedule View
	Use Room view
	Reservation view
	Authentication view

	Authentication service
	Goals
	Concept
	Sequence

	Security
	Implementation
	Mechanism
	Client authentification

	Backend service
	Goals
	Architecture considerations
	System Architecture Overview
	Service oriented architecture (SOA)
	REST

	Summary
	Platform considerations
	Servlet container
	Security
	Database management system
	Server host

	Services offered
	Administrative resources
	Room management resources
	WallClient resources
	AuthService resources
	Barcode resources
	Crond resources

	Implementation details
	MVC and Servlets
	Database abstraction layer
	Database schema

	Interface to supporting systems
	Interface to TUMOnline

	Interacting with the environment
	Introduction
	Requirements
	RoomControl module
	Overview
	Controller microprocessor
	Controller IO and PSU board
	Status LEDs
	Output channel
	Input channel
	Network connectivity

	RoomControl Software
	Initialization
	Connection handshake
	Command Message

	Security
	Network security
	Software security
	Physical security
	Considerations for productive use

	Actuators and sensors
	Lock actuator with visual feedback
	Door state sensor

	Installation
	Future considerations
	Scaling
	Audit
	Robot Operating System

	Conclusion
	Summary
	Outlook
	Productive use
	Multiplication

	Core backend service resources
	RoomControl BOM
	Arduino UNO schematics
	RoomControl message commands
	Abbreviations
	List of Figures
	List of Tables
	Bibliography

