
Technische Universität München

Distributed Multimodal Information Processing
Group

Prof. Dr. Matthias Kranz

Studienarbeit

Supporting Learning on Mobile Devices

Author: Yeray Garćıa Quintana
Matriculation Number:
Address:

Advisor: Andreas Möller
Begin: 18.10.2010
End: 31.03.2011



Abstract

In this thesis we will address the lack of an information system for lecturers to manage
and share didactic methods. This is part of a bigger mission: The system will hopefully
help lecturers learn about new ways to increase the quality of their teaching strategies
and it will also help them make their courses more engaging for the students. On the
other hand, we wanted it to adapt to the current life style where information is accessible
from everywhere. So lecturers should be able to consult didactic content on the go, in the
breaks between lectures, in the subway, etc. To achieve this goal we have come up with a
combination of a cloud-based database and two interfaces, namely, a webapp1 and a mobile
app for Android devices. All this three components communicate with each other to build
a complex system that behaves as one entity. What we have done, in the end, is not only
create the necessary infrastructure to achieve our immediate goal but we have also gotten
one step closer to our bigger mission.

1A webapp or web application is an application that is accessed over the Internet. It is therefore based
solely on web technology and is, thus, platform independent

2



Contents

Contents 3

1 Introduction 5
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Work 7
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Courses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Multimedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Online content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Mobile content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Survey Of Demand 10

4 Technical Part 13
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Android Mobile App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.1 ActionBar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Sign in screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.3 Sign Up Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.4 Home screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.5 Favorites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.6 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.7 Detailed View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.8 Image Gallery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.9 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Remote MySQL Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1 Tables For Didactic Methods . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Tables For The User Account System . . . . . . . . . . . . . . . . . 27

4.4 Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.1 Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.2 Sign in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.3 Forgot Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3



CONTENTS 4

4.4.4 Sign up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.5 List of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.6 View single method . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.7 Edit Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.8 Add new method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.9 View Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.10 Edit account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.11 Admin Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Communication Between Mobile App and Website . . . . . . . . . . . . . . 42

5 Possible Improvements 45
5.1 Recommendation system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Sorting by popularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 User Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 User Base Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusion 48

List of Figures 49

List of Tables 50

Bibliography 51



Chapter 1

Introduction

The use of smartphones is increasing everyday and with it a life style where every piece
of information is available everywhere. Smartphones come today most of the time with
Internet flat rates which give them the power of a nearly infinite source of information. So
why not take advantage of this potential and use it to solve problems that exist nowadays?
Well, this is exactly what we have done.

The Institute for Media Technology at Technische Universität München focuses on sev-
eral research topics. Some of them are networked multimedia systems, mobile multimedia,
human-X interaction, ubiquitous computing or multi-modal information processing. Com-
bining several aspects of each of this research areas we came up with a practical project
whose main goal was to build a system for professors, doctorate candidates or assistants to
manage didactic methods right from their mobile phones. This way they could read about
their favorite didactic methods, learn about new ones, share them with others, search for
specific criteria and all of this from the palm of their hands.

To achieve this goal we not only had to make sure the system worked from a technical point
of view, but we had to work together with didactic departments from several universities
in Munich, such as the Sprachraum at the Ludwig-Maximilians-Universität München or
the Carl von Linde-Akademie at the Technische Universität München, to make the final
product usable.

No mobile app exists yet for this purpose and this made its design and implementation
a little more difficult but also more engaging and even fun. We have encountered some
difficulties along the way and there is still plenty of room for improvements but we think
we have done a good job.

On a side note, I would like to mention that this project not only let me apply the knowledge
I have been acquiring throughout my studies, but it also let me get in touch with personal
interests and current trends, such as cloud computing and the emerging mobile operating
system Android.

Without further ado, let me guide you through this thesis.

5



Chapter 1 Introduction 6

1.1 Overview

This thesis is divided in several parts. First we are going to see what the state of the art
is in this field and what other ways there are for users to access didactic content.

After analyzing the related work and choose the goal of our project we are going to show
the results of a survey that was conducted to verify if there really was a demand for the
system we were about to build. This survey will also serve us to extract from potential
users which are the most important features the system should have to be a high-quality
product. This will give us a good starting point to begin with the design of the system
and it will also give us the direction we should follow to achieve our goal.

After that we will continue with the technical part, where we will get into the details of
every component of the system. We will see how each component was implemented, why
it was implemented that way and how each component interacts with each other to form
a complex system capable of solving the problem presented at the beginning.

After that we will discuss the possible directions in which the system can be expanded in
the future.

At the end we will come to a conclusion where we will synthesize all chapters to leave the
reader with a complete idea of what was achieved.



Chapter 2

Related Work

2.1 Overview

In this chapter we will see what the state of the art is on sources for didactic methods. We
will discuss what the pros and cons are for each of them.

Nowadays there are different types of sources a teacher or professor can go to for information
on teaching methods, for example:

1. Books

2. Courses

3. Multimedia (CD’s, DVD’s)

4. Online content (webpages, video clips, documents)

5. Mobile content (smartphone apps)

2.2 Books

Books are excellent information sources to read about didactic methods. They can go into
much detail and their content is most of the time of great quality. However they have
multiple disadvantages: Books are not updated frequently, they cannot be carried around
in great amounts and sometimes only one chapter is of interest for the reader so they can
be inefficient.

2.3 Courses

Courses are great and fast ways to learn about new didactic methods, since they allow
experts in the field to guide teachers and to explain them in a practical way how to apply

7



Chapter 2 Related Work 8

those methods. However the problem with them is how their participants access the content
that is taught. The annotations are usually all they have left at the end and sometimes
they are not sufficient. Additionally, courses require their participants to adapt to the
course’s timetable so the philosophy of “any time, any place” is not present. A couple of
examples are mentioned in the literature [9, 16].

2.4 Multimedia

It is well known that a person can retain more information about a topic if it is taught
using audio-visual material. Because of this, multimedia sources are of great importance
to a learning teacher. Nowadays this material is offered in form of CD’s and DVD’s. This
has several advantages as well as disadvantages. CD’s and DVD’s allow one to watch the
didactic content in the television, computer or even in class using a projector. However, it is
content that is only accessible offline. It requires the CD’s or DVD’s and some equipment
to display it. If, on the other hand, the user wants to retrieve that information from
somewhere else, he/she will not be able to do so. Some examples are mentioned in the
literature [9, 16, 18].

2.5 Online content

One of the main sources for information retrieval is the Internet. It has several advantages
over the other sources, namely, it offers access from any place with an Internet connection
(this includes mobile phones), online content can be easily updated, user interaction is
possible so users can learn from each other, it can offer multimedia content, it can be used
to categorize information and to connect it with related or similar content, etc. However,
despite all this advantages, no application or website has taken advantage of its full poten-
tial. The majority of them consists of a series of links to certain didactic methods updated
normally by a single person or institution. Some examples are shown in the literature
[4, 6, 18, 19].

2.6 Mobile content

As mentioned in the previous section, only online content provides ubiquitous access to
the information. Websites can be accessed from mobile phones using the built-in browser.
However, the minority of them has a mobile version, so viewing them in the small screen of
mobile devices is not a pleasant experience for the user and navigating through the website
can be difficult and cumbersome.



Chapter 2 Related Work 9

2.7 Conclusion

As we can see, there is a lot of ways for teachers and professors to read about didactic
methods. However, there is not a good way to organize, manage, share or contribute to
that information yet. The goal of this project was therefore to build such a system. One
where ubiquitous access to didactic methods were possible, where users could share their
knowledge with the community, where they could organize their own methods and all of
this from the palm of their hands.



Chapter 3

Survey Of Demand

As can be read in the previous section, few to no didactic apps exist for teachers and
professors to manage or read about their didactic methods. Therefore a survey was made
to see if developing an app to fill this gap would be used at all and, if so, what requirements
should it fulfill.

The survey was made to a group of people composed of students, advisors, Ph.D. students,
postgraduate students, professors and assistant professors (see figure 3.1) coming from
universities like the Technische Universität München, the Ludwig-Maximilians-Universität
München and the Universität der Bundeswehr München. They were attending a course
on didactic methods and represented therefore perfect candidates for a statistical survey.
A few questions were asked to them regarding how they used their phones and where did
they go to read more about didactic methods.

Figure 3.1: Heterogeneity of the Statistical Population

From figure 3.2 we can see that the majority of the asked persons owned a smartphone,
this was key to decide whether an Android mobile app made any sense. On the other
hand, those who didn’t own a smartphone pointed out that they would like to access the

10



Chapter 3 Survey Of Demand 11

information in some other way. We can also see that the mobile app was of interest for the
majority of the interviewed persons.

Figure 3.2: Own a Smartphone and Would Use the Mobile App

As we asked them how they used their smartphone and how they looked for information
about didactic methods we could draw some conclusions. Since researching about infor-
mation was the activity the users did the most right behind checking their email, this gave
us a hint about what type of mobile app to develop. It should be for reading and not for
editing, so user input was to be reduced to a bare minimum but should allow them to filter
out the desired information quite easily. As we can see in figure 3.3 one of the primary
sources to read about didactic methods is the Internet. To maintain that model, the infor-
mation should be available in the cloud1, so that ubiquitous access could be possible. We
can also see that the users also ask their colleagues about didactic methods, so the system
should allow them to create and share their methods for other users to see.

Figure 3.3: Smartphone Features And Methods’ Information Sources

The next questions were regarding the type of features they would use from the mobile
app the most. In figure 3.4 we can see that searching/filtering, examples and multimedia
are the most popular. So special thought must be put into the design of this sections of
the mobile app.

1Cloud is used here in the context of cloud computing, where it represents a metaphor of the Internet



Chapter 3 Survey Of Demand 12

Figure 3.4: What features would be used the most

After evaluating the results of the survey we had enough information to start the design
of the system. For starters, it would involve a database, an Android mobile app and
probably some sort of stand-alone PC program (or even a website) for those who don’t own
a smartphone. Since filtering out the desired methods turned out to be very important for
the potential users, special care should be put into the design of the search functionality
of the mobile app. In the long run, user interaction should be supported, so a way for
the users to create and share methods should be implemented. To let the application
have enough information about user preferences and learn about the relevance of certain
methods, some sort of user rating or favorites system should be put in place.



Chapter 4

Technical Part

4.1 Overview

Following the guidelines of the survey of demand (see chapter 3) a system was built that
allowed users to manage didactic methods. The users would create an account and would
have access to a database which contained a series of didactic methods created by experts
or even by other users. This database could be visualized using a website or a smartphone
with the Android Operating System installed. Each user has by default edit permissions,
meaning that they can create new methods and modify or delete the methods they have
created. They can keep them private or share them with the community.

In this chapter the technical aspects of this system will be explained in detail.

The system is composed of three components:

1. Android mobile app

2. Remote MySQL database

3. Web server (Apache server)

4.2 Android Mobile App

This section will describe how the mobile app was designed, why it was designed that way
and what was made to achieve that goal.

The mobile app is composed of eight main screens:

1. Log in

2. Sign up

3. Home (List of all methods)

4. Favorites (List of all favorite methods)

13



Chapter 4 Technical Part 14

5. Search

6. Detailed view (for each method)

7. Image Gallery

8. Settings

4.2.1 ActionBar

The navigation between the main screens is made much more intuitive with the imple-
mentation of a so called ActionBar [17, 20]. The ActionBar stays at the top of the screen
replacing the default application title bar. It contains the icon of the application, the title
of the current screen, and a series of buttons which would allow the user to navigate to
important sections of the application, e. g., the Home screen, the Favorites screen, the
Search screen and to different sections of the Detailed View screen. The user name of the
currently logged in user is displayed right below it.

Several alternatives have been tested, like a tabbed interface or an initial list view (see
figure 4.1). The ActionBar (apart from being the current trend in Android mobile apps
[17]) has been chosen as the better alternative due to many reasons: it is intuitive and
self-explanatory, it allows the user to navigate quickly to different sections of the app, it
allows the developer to have full control of a custom title bar, it does not take as much
screen space as a tabbed interface, it allows branding, etc.

Figure 4.1: Design Alternatives (Tabs, List, ActionBar)



Chapter 4 Technical Part 15

4.2.2 Sign in screen

The first screen that the user encounters is the Sign in screen. Here the user can enter
his/her user name and password and mark a check box which would tell the application to
remember the entered credentials (see figure 4.2). If the user does not have an account in
the system, he can click on a button which would take him/her to the Sign up screen.

Under The Hood

The Sign in screen is implemented in the file Login.java and performs one of two actions:

1. It allows the user to enter his/her credentials and upon clicking the Sign in button
a background task (implemented in LoginTask.java) is run which would contact the
remote server and check whether the entered information is correct or not (see section
4.5 for more details).

2. If the user has marked the “remember” check box in a previous session a background
task (implemented in CheckLoginTask.java) is automatically run which would contact
the remote server and check if the stored information is still valid (since sessions can
be invalidated remotely after a maximum of two weeks) (see section 4.5 for more
details).

4.2.3 Sign Up Screen

The Sign up screen is similar to the Sign in screen. Only one more field for the email
address is shown (see figure 4.2). After tapping on the Sign up button, and if the oper-
ation completes successfully in the remote server, the user is automatically logged in and
redirected to the Home screen.

Under The Hood

After entering the information and tapping on the Sign Up button the background task
SignUpTask is started. While the mobile app talks to the remote server a “Loading” dialog
is shown to the user. For more details see section 4.5.

4.2.4 Home screen

After signing in the user sees the list of all the methods which are currently stored in the
remote database (see figure 4.3). Each list item consists of the following parts:

1. An icon which would allow the user to quickly identify each method



Chapter 4 Technical Part 16

Figure 4.2: Sign In and Sign Up Screen

2. The method’s title

3. A star which would allow the user to mark the method as favorite

If the method is a user-defined method, it is differentiated using an additional user icon
( ).

The user can fling up and down to navigate through the list.

At the top of the screen the user can see the ActionBar where he/she can identify the icon
and name of the app. There are also two buttons which would allow him/her to navigate
to the Favorites and the Search screens.

On the Home screen the user can click on the menu button, where he/she can find different
menu items to sign out, to update the list of methods with newer information from the
remote server and to open the settings screen.

Under The Hood

The Home screen accepts a variable (INTENT REFRESH ) that can be attached to the
Intent which starts the Activity. This variable indicates whether the data should be re-
freshed (that is, fetched from the remote server) right away. Based on this variable, the
home screen performs the following actions:



Chapter 4 Technical Part 17

1. If INTENT REFRESH is passed with the Intent and it is true, the data is fetched
from the remote server. If it is false, the locally stored data is shown on the screen.

2. If INTENT REFRESH is not passed, we assume the data has already been fetched
not long ago by another process and therefore the screen is just filled with locally
stored data.

The Home screen, as well as the Favorites and Search screens, is a subclass of Custom-
List. This allowed me to avoid redundancy in the code and to extend it if screen-specific
functionality was required. The main functionality was therefore implemented in Custom-
List.java and only the method filldata() was overwritten in the child class Home.java. The
method filldata() selects the wanted data from the database as a Cursor and binds that
Cursor with the user interface with the help of a List Adapter. In this process intervene
two important classes: DbAdapter and CustomCursorAdapter.

DbAdapter is a class which performs all database related operations, like creating tables,
reading information out of the database and updating, deleting and inserting entries in the
database. It is based on the NotesDbAdapter class from the Android Notepad tutorial [3],
but has been heavily enhanced.

CustomCursorAdapter is an important class which, as mentioned above, helps bind data
in a Cursor with a user interface element (for example, a list). In order to make the app
respond fast despite a large number of list items, various techniques have been applied
which have been extracted from the Android Developer examples [2] and from Android
presentations on performance by Romain Guy [12]. One of those techniques is to create
as many list items as fit inside the screen. When the user scrolls up or down and a list
item is about to get hidden, that same list item holder is used to hold the data of the list
item which is about to get uncovered at the other end of the screen. So if the list contains
hundred elements, but only ten can be shown at a time on the screen, only ten list item
views are created and reused when the user scrolls up or down.

4.2.5 Favorites

The Favorites screen can be accessed by clicking the star button in the ActionBar. In
this screen the user can navigate through all methods that he/she has marked as favorite.
Otherwise it is similar to the Home screen (see figure 4.3).

Under The Hood

Favorites is, as mentioned above, a subclass of CustomList. Therefore everything that
applies for the Home screen, applies also here except for following differences:

1. The ActionBar is updated to match the current screen with a corresponding title
and with a Home button to return to the Home screen



Chapter 4 Technical Part 18

Figure 4.3: Home and Favorites Screen

2. The filldata() method would fetch in this case only the entries from the database
that are marked as favorite

3. This class uses a FavoritesCursorAdapter which is a child of CustomCursorAdapter.
FavoritesCursorAdapter overwrites the method toggleFavorite() of his parent class.
The new method would not only change the value of the favorite flag, but it would
also hide that list item from the current screen, since only entries marked as favorite
should appear on this screen.

4.2.6 Search

The Search screen allows the user to filter the list of methods. The goal of this class is to
make complex queries in an easy manner. To fulfill this goal a custom Search Activity had
to be implemented, since the default Android search mechanisms were not sufficient.

To interact with this screen the user would enter search terms in the upper text field. Each
time a new character is entered, the methods’ list is updated to match the new search
terms. To narrow the search results, the user can click on the “add” button ( ) and a
new search field would slide in from the right-hand side. This should have the effect of
making the user think that the search terms that he/she has entered until now are still
there and can be accessed by swiping left or right with the finger. In each search field the
user can choose between a variety of categories to search by. If the user wants to remove a



Chapter 4 Technical Part 19

search field to widen his search results, he/she just needs to click on the “remove” button
( ).

Approaches

The search feature is probably the feature that will be used the most, as can be extracted
from the statistics of the survey, and therefore much thought has been put into its design.

It is accessible from all other screens, either by pressing the magnifying glass icon from the
ActionBar or by pressing the hardware magnifying glass button which comes with many
of Android devices.

As opposed to the approach where the user sees an empty screen and search results are
shown after typing what the user wants to retrieve, the filtering approach has been chosen,
where the user is shown the full list of results from the beginning (much like the Home
screen) and he/she begins to narrow it down to the results he/she wants to retrieve.

The Search screen was designed in a first stage in the following way: The user sees a search
field at the top of the screen and the search results right below it. When the “add” button
is clicked a new search field is created right below the first one. After adding two or three
search fields, one below the other, the results get hidden by the soft keyboard, so the user
can’t see them and, hence, from a usability point of view, this design failed (see figure 4.4).

To solve the space problem and to give the user a notion of how many search results got
hidden by the soft keyboard, the following enhancements were made (see figure 4.4):

1. The Search Activity was made full screen1 so that the whole screen, including the
status bar at the top, gets covered by the Search Activity

2. The ActionBar was removed

3. An information bar was added right below the input fields showing the number of
results returned by the search query

4. Every search field was inserted one next to the other, rather than one below the other,
sliding in from the right or left-hand side as the user added new fields or swiped with
his/her finger in either direction. This way the user gets the feeling that the search
terms extend beyond the screen, but remain there in spite of not seeing them

5. By making the search results update with each new character, the need of a search
button disappeared, leaving more space for the actual results

1In the definition of the Activity in the AndroidManifest.xml file two variables can be defined, namely
stateVisible and adjustResize, that would allow the soft keyboard to pop up when the Activity is
launched and would allow the Activity to resize in order to allow the user to scroll and see what is
behind the keyboard. However this features do not work when the Activity is in full screen mode, as
can be read here: http://code.google.com/p/android/issues/detail?id=5497



Chapter 4 Technical Part 20

Figure 4.4: Different Approaches for the Search Screen

Under The Hood

The main task of the Search Activity is to interpret the user input, build an SQLite [13]
query, send it to the database and show the query results on the screen.

Interpret User Input For the user input two types of input fields are available:

1. A simple text field that allows the user to make general queries to the database, that
is, to search within all columns of the database table where the methods are stored.
This input field is the only one shown when the Activity is launched.

2. A combination of drop-down input fields and text fields that allow the user to make
specific queries to the database, that is, to search within one single column of the
database table. This input fields are shown after clicking the “add” button, since
the user would click this button to narrow down the search results and thus make a
specific query.

Build An SQLite Query In order to build the SQLite query, the set of input fields is
walked through programmatically and an SQLite query is thereby created with the values
chosen by the user in each drop-down input field and entered in each text input field.



Chapter 4 Technical Part 21

Send Query To The Database In order to build the SQLite query it was necessary to
take into account which type of tables to use in the database. Two approaches have been
taken:

1. Standard tables: The main advantage is that more complex and specific queries
can be made. The main disadvantage is that for large databases the response can
take much longer than with Full-Text Search tables.

2. Full-Text Search (FTS) tables [5]: The main advantage is that the response is
much faster in comparison to standard tables. The main disadvantage is that only
text and prefix queries can be made.

At this point a decision was made in favor of the standard tables, due to the ability to
make complex queries and because a performance difference would not be perceived by the
user considering the estimated dimension of the database.

However both approaches have been coded and one can easily switch between them by
changing the variable mFtsIsEnabled in Search.java to true or false

The SQLite query that would be sent to the database for a standard table definition would
have the following structure:

If entered in the general search input field:

1 SELECT ∗ FROM METHODS TABLE WHERE ( column 1 LIKE ’%MY GENERAL SEARCH TERMS%’
OR column 2 LIKE ’%MY GENERAL SEARCH TERMS%’ OR . . . OR column n LIKE ’%

MY GENERAL SEARCH TERMS%’ )

Listing 4.1: General Search SQLite Query

If entered in the specific search input field:

1 SELECT ∗ FROM METHODS TABLE WHERE column i LIKE ’%MY SPECIFIC SEARCH TERMS%’

Listing 4.2: Specific Search SQLite Query

If entered in both types of fields:

1 SELECT ∗ FROM METHODS TABLE WHERE ( column 1 LIKE ’%MY GENERAL SEARCH TERMS%’
OR column 2 LIKE ’%MY GENERAL SEARCH TERMS%’ OR . . . OR column n LIKE ’%

MY GENERAL SEARCH TERMS%’ ) AND column i LIKE ’%MY SPECIFIC SEARCH TERMS%’
[AND column j LIKE ’%MY SPECIFIC SEARCH TERMS%’ . . . ]

Listing 4.3: Combined Search SQLite Query

Show The Query Results On The Screen After retrieving the Cursor object from the
database the CustomCursorAdapter is used to bind the data with the GUI2. Thus the
results are shown to the user as a filtered list of methods.

2GUI: Graphical User Interface



Chapter 4 Technical Part 22

4.2.7 Detailed View

If the user wants to get more detailed information about a didactic method listed in one of
the previous screens (Home, Favorites or Search), he/she can click on it and the Detailed
View screen is launched. On this screen relevant information is shown as a list of sections
composed of a section header and a section body. The available sections are: Picture
gallery, Social form, Phase, Subphase, Result, Course type, Participants, Seating, Material,
Time, Rating, Our Rating, Proceeding, Phase-specific proceeding, Variation, Examples,
Tips, Visualization (see figure 4.5).

Figure 4.5: Detailed View and Content Menu

To jump between all these sections the user can fling up or down to scroll through the
detailed view or he/she can click on the content menu available as a button in the ActionBar
(see figure 4.5). Tapping on it would show a floating menu containing the headers of all
sections and tapping on each entry would scroll the detailed view to the desired position.

Next to that button there are others to go to the Home screen, to the Favorites screen
and to the Search screen.

To navigate through the different methods, the user can swipe the screen left or right with
his/her finger and a new item would slide in from the right or left-hand side. The order
in which the methods are shown depend on the previous screen. E.g. if the user tapped
on a method in the Favorites screen, swiping through the methods would loop through all
favorite methods, in the same order that they were shown in the Favorites screen. The
same applies for the Home and Search screens.



Chapter 4 Technical Part 23

The same gestures are supported on the gallery section. The gallery section contains a
set of thumbnails the user can navigate through by swiping left or right. Once the user
has found a picture he/she is interested in, he/she can tap on it. This would open it in
full-screen (see Image Gallery 4.2.8).

Since user-generated content is supported, a visual distinction is made to help the user
recognize which methods are default ones and which were created by another user. This
was achieved by adding a user icon next to the method’s title and showing a message below
the title section indicating that the method was generated by a user (see figure 4.6).

Figure 4.6: User-defined Method

Under The Hood

This screen is implemented in the file ViewItem.java. When this Activity is created, the
database helper DbAdapter is instantiated, since the database will be accessed several times
to retrieve the needed information.

Another important class is instantiated, namely ViewFlipper, which is used throughout
the application. This special View container acts as a View switcher. Only one of its
children Views is shown at a time and by calling methods like ViewFlipper.showNext(),
ViewFlipper.showPrevious() or ViewFlipper.setDisplayedChild(), the currently displayed
View is changed. One can even define Animations to perform between each View change.

A GestureDectector object recognizes gestures made by the user and sends different com-
mands to the ViewFlipper, depending on which gesture has been performed.

In addition to this infrastructure two custom classes have been defined: Container and
Item. Container is a convenience class which holds references to all the Views on the
GUI which can be populated with information. Item is a convenience class which holds
the method’s information that has been extracted from the database. By calling Con-
tainer.populateFields(Item item) the information from the database can be shown on the
screen.

Each time the user makes a gesture to flip to the next method, the information of the next
method is extracted from the database and saved into Item. The Container representing
the hidden View is fetched and populated with the information saved in Item in the
background and then the command ViewFlipper.setDisplayedChild() is called, triggering
the View change with its corresponding Animation.



Chapter 4 Technical Part 24

4.2.8 Image Gallery

The only task of the Image Gallery is to show a full-screen picture of a thumbnail that a
user has tapped on in the Detailed View screen. Therefore, the only two things the user
sees when launching this screen is the ActionBar and the tapped picture (see figure 4.7).

Figure 4.7: Image Gallery

Various gestures are supported on this screen:

1. Pinch: Pinching on a picture would enter the “zoom” mode. In the zoom mode the
user can zoom in and out by pinching the fingers together or away from each other.

2. Drag: Once a picture has been zoomed, the user can drag the picture around by
tapping and dragging the finger in the direction he/she wants the picture to move.

3. Double tap: After zooming in or out on the picture, the user needs to double tap on
the picture to return to the navigation mode. This would resize the picture to fit the
screen and allow the user to make swipe gestures to navigate through the pictures.

4. Swipe: Once in navigation mode, the user can swipe left or right to navigate through
the pictures in the same order they were shown in the thumbnail view on the Detailed
View screen



Chapter 4 Technical Part 25

Under The Hood

This screen is implemented in SingleImage.java. As in ViewItem.java, this Activity makes
use of an ImageSwitcher object, which has a similar behavior to ViewFlipper, which in
combination with a GestureDectector object, handles the images switching (see 4.2.7).

To handle zooming and panning a custom ImageView has been used which has been found
in the literature [7, 11] and has been modified to fit the requirements.

The main mechanism to zoom and pan is the following:

The ImageView which holds the image fills the whole screen from the ActionBar to the
bottom and only the Bitmap inside it is resized and moved. An OnTouchListener is
attached to the ImageView and it listens to every touch event.

Drag When the user touches the screen with one finger the position of the touch event is
saved and the drag mode is enabled. If the user moves then the finger the image is moved
by the distance difference between the new position and the start position. When the user
lifts the finger the drag mode is disabled.

Zoom When the user touches the screen again with one finger and a second finger is
detected the distance between both fingers is calculated and saved. The middle point is
also calculated and saved. The zoom mode is enabled. When the user moves one of his/her
fingers the distance between them is recalculated. Then the ratio between the new distance
and the previous distance is calculated and the image is scaled by this amount around the
middle point saved in the previous step. When the user lifts the finger the zoom mode is
disabled.

When in navigation mode, which is activated at the beginning and after double tapping a
zoomed image, only fling gestures are recognized using the same GestureDectector object
mentioned in 4.2.7

4.2.9 Settings

The Settings screen allows the user to change different aspects of the mobile app. Here
the user can change the type of network connection, whether to save remotely fetched
information in the SD card or clear the cache (see figure 4.8).



Chapter 4 Technical Part 26

Figure 4.8: Settings Screen

Under The Hood

The Settings screen is implemented in the Preferences.java file. It extends PreferenceAc-
tivity available in the Android SDK3 and, thus, has the same look and feel as every other
settings screen throughout the Android Operating System. Therefore the user is already
familiar with it and knows instantly how it works.

The Preference class contains multiple static methods to set and retrieve the settings
variables needed throughout the application. This methods can be called directly, passing a
Context object as argument, without the need to create an instance of the class Preference.

4.3 Remote MySQL Database

All the information shown in the mobile app is retrieved from a remote MySQL database.
The database is used for two main tasks: Storing information about the didactic methods
and storing user credentials for a user account system.

The database contains the following tables:

1. For didactic methods:

3SDK: Software Development Kit



Chapter 4 Technical Part 27

a) ddk methods

b) ddk favorites

2. For the user account system

a) ddk users

b) ddk sessions

c) ddk active users

d) ddk active guests

e) ddk banned users

4.3.1 Tables For Didactic Methods

ddk methods This table contains all fields shown in the Detailed View section of the
mobile app. In addition to the fields already listed in 4.2.7, there are four more fields:
id (a unique number that identifies the method), folder (which is used to save the name
of the folder the pictures are saved in), scope (to mark the method as global (0), user-
defined private (1) or user-defined public (2)) and username (to save the user name of a
user-defined method).

ddk favorites This table contains pairs of method id’s and user names. If an entry exists
with method id = 1 and username = johndoe it would mean that the user johndoe has
marked the method with id = 1 as favorite. Every time a method is marked as favorite a
new row is added to this table and every time a method is deleted or the favorite star is
toggled off, the corresponding entry is deleted from this table.

4.3.2 Tables For The User Account System

The User Account System is a standard Hypertext Preprocessor [21] (PHP) User Account
System that has been found in the literature [14] and has been heavily modified to fit the
needs of the application.

ddk users This table holds the following fields: username, password, userlevel, email,
timestamp, language, favoritesversion and dbversion. The fields username, password, email
and language are set by the user when he/she signs up. userlevel can be any number
between 0 and 9 (see table 4.1). timestamp holds the last time the user was active. This
is used in the Admin Center section of the website to delete users who haven’t been
active for a certain time period. favoritesversion holds the current user-specific version



Chapter 4 Technical Part 28

of the favorites table (ddk favorites). It is increased by one each time a user marks or
unmarks a method as favorite. dbversion holds the current version of the methods table
(ddk methods). When a method that is visible to everyone is added, edited or removed,
the database version of every user is increased by one. When a method that is private, and
thus visible only to one user, is added, edited or removed, the database version is increased
by one only for that user. By doing this, we prevent the whole database to be sent to
users who don’t see private methods. If a user updates a private method in the web page,
this doesn’t trigger an update in the mobile app of other users, which is done to reduce
network traffic.

Value Meaning
0 Guest user (no permissions)
1 User with read-only permissions
2 User with edit permissions
3-8 For future use
9 Administrator (full control)

Table 4.1: User level

ddk sessions This table holds information about user sessions. It contains the following
fields: username, userid, timestamp and time. The field username contains the name of
the users who have an open session, that is, that have signed in using the mobile app or
the web page and haven’t signed out yet. Every time a user sends his/her user name and
password to sign in, a unique userid is generated, saved in this table and sent back to the
user. If the user signed in through the web page, it is saved locally as a cookie and sent
back to the server with every page refresh. If the user signed in through the mobile app,
it is saved in the local preferences and sent back to the server as a POST variable with
every HTTP4 request. From this point on, the user only needs to send the userid and not
the password anymore. This way the security risk of the password being stolen is reduced.
The field timestamp holds the time the user was last active using this session. The field
time is not used in the code and its only purpose is to display a human-readable timestamp
for administrators who are reading the database directly.

ddk active users This table contains a pair of user names and timestamps. Its purpose
is to hold a list of currently active users. A user is active if less than 10 minutes have
passed since his/her last activity. With this information statistics can be shown on the
web page, but this feature is not used at the date of this writing (March 2011).

4HTTP: Hypertext Transfer Protocol



Chapter 4 Technical Part 29

ddk active guests This table contains a pair of IP5 addresses and timestamps. Its pur-
pose is to hold a list of currently active guest users. A guest user is active if less than
5 minutes have passed since his/her last activity. With this information statistics can be
shown on the web page, but this feature is not used at the date of this writing (March
2011).

ddk banned users This table contains a pair of user names and timestamps. Its purpose
is to hold a list of currently banned users. A user can be banned by any administrator
using the Admin Center section of the web page 4.4.11 after signing in. Banned users get
an error when they try to sign in.

4.4 Web Server

The web server has an Apache [15] HTTP server installation where a website is hosted.
The website is programmed in HTML6, CSS 7, Javascript, Ajax 8 and XML9 on the client
side and in PHP on the server side.

It was implemented at the beginning for one reason: It allowed the administrators to add
new methods to the database.

As the website evolved, it no longer served as an interface to add new methods, but
became a complex system that had an integrated user account system, allowed not only
administrators but also standard users to add new methods to the database and served as
an alternative for those users who did’t own a smartphone with the Android Operating
System installed on it. The website provides also a means in form of an XML interface to
access the data stored in the remote MySQL database from the mobile device.

The website is therefore the hub that makes the whole ecosystem work together. It was
implemented using web technology mainly because doing so made it platform-independent
and followed the cloud computing philosophy mentioned in the introduction (see ??).

The website is composed of following pages:

1. Log in

a) Sign in (start page)

b) Forgot password

c) Sign up

5IP: Internet Protocol
6HTML: HyperText Markup Language
7CSS: Cascading Style Sheets
8Ajax: Asynchronous JavaScript And XML
9XML: Extensible Markup Language



Chapter 4 Technical Part 30

2. Database viewing and handling

a) List of methods (main page)

b) View single method

c) Edit single method

d) Add new method

3. User Account

a) View account

b) Edit account

4. Administration

a) Admin Center

4.4.1 Header

At the top of each page is the header and it allows the user to navigate to main parts
of the website, e. g., to the Main page, to the Account page, to the Admin Center (for
administrators). A Sign out link is also available to close the current session (see figure
4.9).

Figure 4.9: Website header

Under The Hood

Since the header is seen on every page it was implemented as a stand-alone module in
header.inc.php. This allowed me to avoid redundancy in the code since it could be imported
into any other file with a simple include command. The branding (Webapp name and
logo) is done here. The navigation bar is implemented separately in topbar.inc.php, which
is included inside header.inc.php.

4.4.2 Sign in

The first screen a user sees when accessing the website is the Sign in page (see figure 4.10).
To sign in, the user would enter his/her user name and password in the corresponding text



Chapter 4 Technical Part 31

fields, check whether the session should be remembered for a maximum of 2 weeks and hit
the Sign in button. If the user has forgotten his/her password, he/she can click on the
link “Forgot password” and he/she would be redirected to the Forgot password page (see
4.4.3). If the user has not created an account yet, he/she can click on the link “Sign Up”
and he/she would be redirected to the Sign up page (see 4.4.4).

Figure 4.10: Sign in Page

Under The Hood

The Sign in page is implemented in account/login.php. It starts including the file glob-
als.inc.php where all needed constants are initiated and all important files are included,
like MyDB.class.php (which handles all transactions with the MySQL database), accoun-
t/session.php (which handles all user session related features) or functions.lib.php (which
contains global functions used throughout the website).

After submitting the form, the information is sent to account/process.php. This file handles
session-related actions like signing in, signing out, signing up, editing user accounts and
sending new password to those who have forgotten it.

If signing in completed successfully, the user is redirected to the Main page, otherwise an
error is shown to the user next to the field where the error occurred.

4.4.3 Forgot Password

The Forgot password page is a very simple one. It asks the user for his/her user name
and upon submitting the form, it sends him/her a new generated password to the email
address stored in his/her account (see figure 4.11).



Chapter 4 Technical Part 32

Figure 4.11: Forgot Password Page

Under The Hood

This page contains a form with a single input field for the user name. After submitting the
form, the information is sent to account/process.php where the existence of the user name
is checked. If the user name does not exist, an error is shown to the user. Otherwise, an
email is sent using the convenience class implemented in account/include/mailer.php.

4.4.4 Sign up

The Sign up page is similar to the Sign in page. In addition to corresponding fields
for the user name and password, two more fields are available to enter the email ad-
dress and the preferred language (see figure 4.12). At the moment of this writing (March
2011) two languages are available: English and German, being English the default one. To
add new languages to the interface, the variable $CONFIG[’AVAILABLE LANGUAGES’]
in globals.inc.php needs to be updated accordingly to include a two letter identifica-
tion for the new language. In addition to that, the file lang/<langId>.lang.php should
be created containing a translation for all the words found in any of the other lan-
guage files. E. g., if Spanish were to be included, “es” should be added to the variable
$CONFIG[’AVAILABLE LANGUAGES’] and the file lang/es.lang.php should be created.

Figure 4.12: Sign Up Page



Chapter 4 Technical Part 33

Under The Hood

The Sign up page is implemented in account/register.php. After submitting the form,
all the information is sent to account/process.php as usual. Two new important classes
intervene in this process: the Session class, which can be found in account/include/ses-
sion.php, and the Database class, which can be found in account/include/database.php
and handles all database-related operations only for the user account system, as op-
posed to MyDB.class.php, which is more of a general purpose class. Process calls the
method Session.register(). Here the validity of the user input is checked, in order to re-
turn to the Sign up page in case any errors occurred. If no errors were found the method
Database.addNewUser() is called. Here a new entry is added to the ddk users table (see
4.3.2). If the operation completed successfully, a link is provided to return to the Sign in
page and proceed to sign in.

4.4.5 List of Methods

The List of methods is the Main page. After the user signs in, this would be the next page
he/she would see. This page is composed of three main parts (see figure 4.13): A toolbar on
the left-hand side (which would allow the user to add, delete and export methods), a search
box at the top (which can turn into an advanced search box to allow the user to make the
same type of filtering enabled in the mobile app (see 4.2.6)) and a table containing the
list of all methods (which has the same look-and-feel as the list of methods shown in the
mobile app (see 4.2.4), but has more room for customizations).

Depending on the user permissions, different information is shown and different actions
can be performed. E. g., standard users would only see global methods and user-defined
methods that have been marked as public by the author. Users with read-only permissions
would see the list of methods and, as opposed to users with edit permissions, they would
not see the toolbar, since they were not allowed to perform actions like adding or deleting
methods. Admin users on the other hand, have full permissions and would therefore be
able to see all methods, as well as edit or delete any of them.

Under The Hood

Ajax This page uses a lot of Javascript and Ajax [1] technology. All necessary functions
are implemented in functions.js, utils.js, ajax.js and ajax-new.js. The purpose of using
Ajax was to make the page more responsive by reducing the number of page refreshes. The
way Ajax works is the following: An XMLHttpRequest object is created, POST or GET
variables are attached to it and then the request is sent to the server asynchronously in
the background. In this case, the page that receives the request is request.php. Depending
on which variables were passed, a different response is sent back to the client. The most



Chapter 4 Technical Part 34

Figure 4.13: List of Methods (Main Page)

frequent action done then on the client side is to update a portion of the page with the
received data using javascript. Although Javascript and Ajax is supported by all modern
browsers, the website was programmed in a way that disabling Javascript would make the
website return the same results at the expense of more page refreshes.

The actions that are performed using Ajax are those which require a refresh of the methods’
table:

1. Searching



Chapter 4 Technical Part 35

2. Adding new columns to the table

3. Sorting the table by column

4. Navigating through the pages of methods

5. Marking or unmarking a method as favorite

Search There are two types of search: A basic search and an advanced search.

When a term is entered in the basic search field (see figure 4.14), the entered terms are
searched in every column of the methods’ table in the MySQL database, following the
same scheme as in the mobile app (see query 4.1). The query is updated with every
entered character, it’s then sent to the server using Ajax and the result is displayed right
below the search box without needing to refresh the page. This make the website feel fast
from a usability point of view.

Figure 4.14: Basic Search

In the advanced search (see figure 4.15) two types of search fields are available, as in
the mobile app: A general search box (which behaves exactly like the basic search) and
a specific search box (which searches only within one column of the database’s table).
Clicking on the green add icon ( ) would add a new search field to the advanced search
box, and clicking on the red cross ( ) would delete the search field from the advanced
search box and update the search results accordingly. The queries that are sent to the
MySQL database are the same ones used in the mobile app (see queries 4.2 and 4.3)

Figure 4.15: Advanced Search

Adding new columns to the table To add a new column to the methods’ table, the user
would click on the right arrow next to the header of the last column ( ). After clicking on
the icon, a floating menu is displayed where the user can choose which columns to show.
Clicking on a check box would trigger an Ajax call and the new column would be added
on the fly behind the floating menu.



Chapter 4 Technical Part 36

Figure 4.16: Add Column Menu

Under The Hood The Ajax call would send the column names as GET variables
(columns[]) to request.php. Here the column names would be inserted in the columns
section of the SELECT query (see query 4.4).

1 SELECT <columns [1 ] > , <columns [2 ] > , . . . <columns [ n]> FROM [ table ] WHERE [
c ond i t i on ]

Listing 4.4: Choose columns

Sorting the table by column Clicking on the header of each column would sort the
results alphabetically by clicked column. Clicking again would sort it in reverse order.

Under The Hood The Ajax call would send the column name and the sort order as
GET variables (sortColumn and sortOrder) to request.php. This information would then



Chapter 4 Technical Part 37

be inserted in the ORDER BY section of the SELECT query (see query 4.5).

1 SELECT [ columns ] FROM [ table ] WHERE [ c ond i t i on ] ORDERBY <sortColumn> <
sortOrder>

Listing 4.5: Sort by columnChoose columns

Navigating through the pages of methods The default number of methods listed per
page is 20, as defined in globals.inc.php. If the number of methods stored in the database
is larger than this default value, a bar is shown on top of the list to navigate between
the different pages (see figure 4.17). Clicking on a number would take the user to the
selected page, whereas clicking on “Previous” or “Next” would take the user to the page
right before or after the current one.

Figure 4.17: Go to next or previous pages

Under The Hood The Ajax call would send the page offset and the number of meth-
ods to show on each page as GET variables (offset and rowCount) to request.php. This
information would be inserted in the LIMIT section of the SELECT query (see query 4.6).

1 SELECT [ columns ] FROM [ table ] WHERE [ c ond i t i on ] LIMIT <o f f s e t >, <rowCount>

Listing 4.6: Sort by columnChoose columns

Marking or unmarking a method as favorite If the user wants to mark or unmark a
method as favorite, he/she just needs to click on the star next to the method’s name. If
the method is marked as favorite, the star changes from a gray one ( ) to a yellow one
( ).

Under The Hood When a star is clicked, the id of the method is sent with the Ajax
request to request.php. In request.php it is checked whether an entry with that id exists for
the current user. In such a case, that entry is removed from the favorites table, otherwise
a new entry is added. If the operation completed successfully the value “1” is sent back
to the client, otherwise “0” is returned. On the client side, if a “1” was received, the star
image is toggled.

4.4.6 View single method

The View method page shows all relevant information about a single method, similar to
the Detailed view from the mobile app (see 4.2.7)



Chapter 4 Technical Part 38

Under The Hood

The View method page needs a GET variable for the method’s id passed with the URL10.
If it’s not passed, the user is redirected to the Main page. If it’s passed, the corresponding
entry is fetched from the database and stored in an array. The information is extracted
from the array with a for-loop and printed as an HTML table.

As in the mobile app, this page has a gallery section (see figure 4.18). If a folder name
is stored in the folder field of the database’s table, this page would retrieve all pictures
saved under that folder an store them in an array. The pictures are then displayed in a
thumbnail view using a for-loop. To show each picture in full-screen, the user can click on
any of them and a slideshow view is activated (see figure 4.19). This slideshow is possible
thanks to the Lightbox [10] script by Lokesh Dhakar, so all credit goes to him.

Figure 4.18: Web Gallery

Figure 4.19: Picture Slideshow

Keyboard shortcuts are activated for this page. Pressing the left or right arrow of the
keyboard would allow the user to navigate through the list of methods without using the
mouse. If the picture slideshow is active though, pressing the arrows would allow the user
to navigate through the list of pictures instead.

10URL: Uniform Resource Locator



Chapter 4 Technical Part 39

4.4.7 Edit Method

The Edit method page is similar to the View method page. The only difference is that the
information is not displayed as text, but populated inside the input fields of an HTML
form. Assuming the user has edit permissions, he/she would be able to modify the values
of each field. If the user has read-only permissions, he/she would be redirected to the View
method page instead.

Under The Hood

Like the View method page, the Edit method page needs a GET variable for the method’s
id passed with the URL. If it’s not passed, the user is redirected to the Main page. If the id
is passed with the URL but the user has read-only permissions, he/she would be redirected
to the View method page. Otherwise, the corresponding entry is fetched from the database
and stored in an array. The information is extracted then from the array with a for-loop
and printed as an HTML form, where each field is populated with the information from
the database. After submitting the form the user would be redirected to the View method
page where he/she could see the modifications just made.

For the gallery section an upload form is available (see figure 4.20). After clicking on the
file input a dialog is shown to the user where he/she can choose a picture from his/her
computer. To add more files the user can click on the “more” link and another file input
would be added below the previous one using Javascript. Clicking on the “remove” link
next to each file input would remove it from the upload form. If one of the pictures should
be used as the method’s icon, the user has the possibility to mark the radio button next to
the file input that says “Use as icon for this method”. After having chosen all pictures the
user wants to upload, he/she can proceed to click on the “Upload” button. On the server
side, the pictures would be saved under the path stored in the database. If no folder name
is stored in the database yet, a new folder would be created and its name would be saved
in the database for future use.

4.4.8 Add new method

The Add method page allows a user with edit-permissions to add a new method to the
database. This page would therefore display an empty form, where the user can enter text
or choose entries from predefined drop-down input fields. After submitting the form, the
user is redirected to the View method page, where he/she can verify that everything was
entered correctly and where he/she can proceed to add pictures.



Chapter 4 Technical Part 40

Figure 4.20: Upload form

Under The Hood

The Add method page is a variation of the Edit method page. So please refer to section
4.4.7 to get more details on how it works. The main differences are that no id variable
needs to be passed with the URL and that no upload form is available for the gallery
section. For the picture gallery the existence of an entry in the database is required in
order to update the folder field upon submitting the upload form. Therefore, the ability
to add pictures is made possible in the next screen (the View method page).

4.4.9 View Account

The View account page is a simple one, where the user can see all information regard-
ing his/her user account, e. g., user name, email address and language. To edit this
information, a link to the Edit account page 4.4.10 is provided.

4.4.10 Edit account

The Edit account page contains an HTML form populated with the user account infor-
mation. Here the user can change his/her password, email address or the language of the
website (see figure 4.21).

Under The Hood

After submitting the form, the information is sent to account/process.php. Here the method
Session.editAccount() from account/session.php is called, where the validity of the user
input is checked. If the user input is not valid an error is shown to the user. If it is,



Chapter 4 Technical Part 41

Figure 4.21: Edit User Account

the method Database.updateUserField() from account/database.php is called where the
information is updated in the database (see 4.3.2).

4.4.11 Admin Center

The Admin Center is a page that is only available to the administrators and can be
accessed by clicking on the “Admin Center” link that appears in the upper right section of
the header (see 4.4.1). Here an administrator can manage the user accounts and perform
actions like updating user levels, deleting users, deleting inactive users, banning users or
deleting banned users.

Under The Hood

This page is composed of a set of HTML forms. Every HTML form sends the entered
information to account/admin/adminprocess.php. Depending on which form has been sub-
mitted, different methods are called.

AdminProcess.procUpdateLevel() This method would update the userlevel field of ta-
ble ddk users (see 4.3.2).

AdminProcess.procDeleteUser() This method would delete the entry for the selected
user from the table ddk users.

AdminProcess.procDeleteInactive() This method would delete all entries from the table
ddk users where the timestamp field, that is, the last time the user was active, is older than
a certain time period chosen in the Admin Center page.



Chapter 4 Technical Part 42

AdminProcess.procBanUser() This method would move a user entry from the ddk users
table to the ddk banned users table (see 4.3.2).

AdminProcess.procDeleteBannedUser() This method would delete a certain user from
the ddk banned users table.

4.5 Communication Between Mobile App and Website

The mobile app needs to connect to the server for certain tasks. Those tasks are:

1. Check if user is remotely signed in

2. Sign in

3. Sign out

4. Sign up

5. Retrieve data from the MySQL database

6. Send and receive favorites

7. Download remote pictures

The communication takes place thanks to an XML interface, which is implemented in
the file interface.php. The general mechanism is the following: The mobile app sends an
HTTP request to interface.php with certain GET and POST variables attached to it.
Depending on the attached variables, the interface extracts the necessary data from the
MySQL database and prints it as an XML file. When the mobile app receives the XML file,
the information is extracted using an XML Parser and, depending on the type of request,
the corresponding task is performed.

All this tasks are performed either using the AsyncTask class provided in the Android
SDK or the Java Thread class. The main reason is that downloading information from
a remote server can take a considerable amount of time and the GUI would freeze un-
til the data is completely downloaded. This tasks are contained in their own package
de.tum.lmt.supportinglearning.asynctasks

Check if user is signed in

The Sign in screen is the one that is started when the mobile app is launched. Therefore it
is here where the user credentials are checked. If the “remember” check box was marked in a
previous session, the CheckLoginTask class is instantiated and executed in the background.
This would show a “Loading” dialog while the stored user name and user id are sent to the



Chapter 4 Technical Part 43

server. If the server replies with a SUCCESS message, the user is redirected to the Home
screen, otherwise a dialog is shown with the errors returned by the server for authentication.

Sign in

If the user credentials haven’t been stored yet, empty input fields are shown in the Sign
in screen. The user would enter his/her user credentials and upon clicking the Sign in
button, this information would be sent to the server. If the server replies with a SUCCESS
message, the returned user id is stored locally together with the user name and password.
Otherwise a dialog is shown with the errors returned by the server. From this point on,
the user id, and not the password, is sent together with the user name to the server.

Sign out

When the user clicks the MENU button, a menu pops out with an entry to sign out.
Tapping on this menu entry would send the user name and user id to the server, which
would in turn delete that session from the MySQL database. If this completes successfully,
a SUCCESS message is returned to the mobile app and there all open screens would be
closed except for the Sign in screen. If the server responds with an ERROR message, a
dialog with that message is shown.

Sign up

In the Sign up screen, when the user enters his/her information and clicks on the button
to sign up, the user credentials are sent to the server. There the sign up task is performed.
If the operation completes successfully, the server signs the user in automatically, then a
welcome message is sent to the given email address and a SUCCESS message is returned
to the mobile app. The mobile app would then redirect the user to the Home screen.
If an error occurred or the user input was not valid, then an error is shown giving more
information.

Retrieve data from the MySQL database

Each time a user signs in in the mobile app, it is checked whether changes have been made
to the methods’ database. For that, the mobile app sends the version of the database that
is stored in the mobile device. The server checks then whether that version is older than
the version stored in the server. If that’s the case, the new database is sent to the mobile
app, which would replace the old information with the new one and then display it.



Chapter 4 Technical Part 44

Send and receive favorites

For the favorites, the same procedure as in the above paragraph is used. The mobile app
sends the version of the favorites version with the HTTP request to the server. The server
checks then whether that version is older than the version stored in the server. If that’s
the case, the list of favorites is sent to the mobile app, which would update local database
correspondingly.

Since the user is also able to mark methods as favorite being offline, that is, while no
connection to the server is available, every time the user does so, the method id and
its “favorite” flag are saved in a local SQLite database. The next time the database is
refreshed, either by restarting the mobile app or by clicking on the Sync button of the
options menu, the offline favorites are sent first to the server before retrieving the new
data.

Download remote pictures

Each method can have an icon and a set of pictures assigned to it. There are two locations
where the icons or the pictures are downloaded.

One of them is the Detailed view screen. Here the icons and pictures are downloaded with
the class ImageThreadLoader which is a combination of various examples found in the
literature [22, 23] and modified to meet the application requirements. This class downloads
the images in a background thread so that the mobile app doesn’t freeze while the pictures
are being downloaded.

The other location is the Home screen. In this screen the icons are downloaded with the
same mechanism as in the Detailed view screen. The images however are downloaded in
a different manner. As mentioned in the Home screen section (4.2.4), a menu is shown
when the user clicks the menu hardware button. After clicking on the menu item to sync
the database, a dialog pops up to let the user choose whether he/she wants to download
the pictures of all methods or not. Tapping on “Yes” will start a Service implemented
in DownloadPicturesService.java. This Service will show a notification in the Status bar
where the user can see the progress of the download. Meanwhile the user can interact with
the app without interfering in any way with the download task. When the download is
complete, a new notification is displayed in the Status bar to let the user know.

In the Settings screen the user can choose whether to store the images in the SD card or
not. If the user has marked this check box, the icons and images are downloaded only the
first time. The following times, it is only checked whether new pictures are available. If
that’s the case, only the new pictures are downloaded while the old ones are loaded directly
from the SD card. If the user has chosen not to save the images in the SD card, all icons
and images are loaded on the fly from the server every time the corresponding Activity is
restarted.



Chapter 5

Possible Improvements

Although the system has evolved to become a robust and complex one, there’s still plenty
of room for improvements. In this chapter, we are going to go through a list of different
enhancements which can be subject for a future expansion.

5.1 Recommendation system

Using information about what methods have been marked as favorites, different algorithms
can be applied to come up with a recommendation system. This recommendations could
be added as a new section, both in the website and in the mobile app, where the user could
navigate through a list of methods which could be of interest to that specific user based
on what other methods he/she has marked as favorites.

5.2 Sorting by popularity

As of now the methods are sorted either alphabetically or with the order they were created
in. This can be useful if the user wants to scroll manually to a method whose name is
known to the him/her, but the user can be interested in some method he/she doesn’t
even know they exist. It would be interesting then to show popular methods first and less
popular methods at the end so that the user can see the interesting ones right away. To
achieve this, information can also be extracted from the favorites or ratings other users
have given to certain methods.

5.3 User Interaction

Currently only little user interaction is supported. A user can choose to share methods
publicly for other users to see, but apart from that there is really no communication possible

45



Chapter 5 Possible Improvements 46

between users. This could therefore be subject for a future enhancement of the system.
A commenting system, e. g., could be added to allow users to review methods, so that
others can have different views and opinions on them. The sharing capabilities could be
improved to allow users to share methods only with a reduced number of users. Some sort
of messaging or chat system could be added to allow users to talk to each other about
different didactic methods.

5.4 Optimization

In addition to the enhancements mentioned above there is also room for optimizations
in the way the current system works. Those optimizations have to do with the amount
of network traffic that is generated, the amount of storage space that is used and the
performance of the user interface.

To reduce the amount of network traffic that is generated different approaches can be
taken. For example, a more complex database versioning system would allow to send to
each mobile device only those methods which have been added or modified, instead of
sending the whole database each time any modification is made. Another approach could
be to combine multiple HTTP requests into one, so that multiple tasks can be performed
after sending one single request.

To reduce the amount of storage space used by the mobile app the following could be
considered. If the user has chosen not to store data in the SD card, the images are loaded
every time directly from the server with every restart of the Activity that contains them.
This way the images are only loaded in RAM1 while they are being shown but deleted
while they are not. This uses the minimum amount of storage but generates the maximum
amount of network traffic, so a middle point has to be met. The internal cache directory
can be used, but since only using 1MB is the recommended practice, it is not enough to
hold all pictures. For this reason, one approach could be reducing the size of the images
before sending them. This would not only reduce storage space but also network traffic. In
the gallery section (both in the website and the mobile app), this would make the loading
of the thumbnails quicker contributing to an increase in performance.

5.5 User Base Expansion

To increase the number of users that have ubiquitous access to the didactic content, mobile
apps for the rest of the main mobile platforms (iOS, Symbian, BlackBerry OS, Windows
Phone) can be developed. To get an overview, just by developing an app for the first two

1RAM: Random-Access Memory



Chapter 5 Possible Improvements 47

(iOS and Symbian) the 79.5 % of the market share would be covered [8] as depicted in
figure 5.1.

Figure 5.1: Smartphone Market Share (Q4 2010)



Chapter 6

Conclusion

The problem that we were trying to solve was the lack of a system to manage and share
didactic content. For that we have built an information system that is complex on the
inside, thanks to modern ways to access information and to current technologies in network
communications, but familiar to the user on the outside, thanks to trendy designs for mobile
app interfaces and websites.

Now we have achieved the necessary infrastructure to focus on the content, rather than on
the tools, and we can begin to analyze the relationship between the didactic methods and
the users. We can use the information gathered from the usage of the application, from
the didactic methods that are clicked the most, from the favorites, from the ratings and
from the similarities between each didactic method, to let the methods find their way to
the user, rather than the other way around. This will hopefully open a new door where
it’s not the users that find information, but it’s the information that finds the users.

So, as we can see, this is a first but very important step towards a bigger vision. This
will hopefully help professors get better at what they do and help students get a better
understanding of what is being taught to them.

48



List of Figures

3.1 Heterogeneity of the Statistical Population . . . . . . . . . . . . . . . . . . 10
3.2 Own a Smartphone and Would Use the Mobile App . . . . . . . . . . . . . 11
3.3 Smartphone Features And Methods’ Information Sources . . . . . . . . . . 11
3.4 What features would be used the most . . . . . . . . . . . . . . . . . . . . 12

4.1 Design Alternatives (Tabs, List, ActionBar) . . . . . . . . . . . . . . . . . 14
4.2 Sign In and Sign Up Screen . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Home and Favorites Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Different Approaches for the Search Screen . . . . . . . . . . . . . . . . . . 20
4.5 Detailed View and Content Menu . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 User-defined Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7 Image Gallery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.8 Settings Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.9 Website header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.10 Sign in Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.11 Forgot Password Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.12 Sign Up Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.13 List of Methods (Main Page) . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.14 Basic Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.15 Advanced Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.16 Add Column Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.17 Go to next or previous pages . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.18 Web Gallery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.19 Picture Slideshow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.20 Upload form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.21 Edit User Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Smartphone Market Share (Q4 2010) . . . . . . . . . . . . . . . . . . . . . 47

49



List of Tables

4.1 User level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

50



Bibliography

[1] Ajax Tutorial (Asynchronous Javascript + XML). http://www.xul.fr/

en-xml-ajax.html,

[2] API Demos - List14.java. http://developer.android.com/resources/samples/

ApiDemos/src/com/example/android/apis/view/List14.html,

[3] Notepad Tutorial. http://developer.android.com/resources/tutorials/

notepad/index.html,

[4] Reading Quest. http://www.readingquest.org/strat/home.html,

[5] SQLite FTS3 and FTS4 Extensions. http://www.sqlite.org/fts3.html,

[6] Teach Share. http://www.teachshare.org/wiki/index.php?title=Category:

Techniques,

[7] Brunette, Ed: Hello, Android (3rd edition) - Introducing Google’s Mobile Develop-
ment Platform. Pragmatic Bookshelf, 2010

[8] Canalys: Google’s Android becomes the world’s leading smart phone platform. http:
//www.canalys.com/pr/2011/r2011013.html,

[9]

[10] Dhakar, Lokesh: Lightbox 2. http://www.huddletogether.com/projects/

lightbox2/,

[11] Foss, Robert: TouchImageView. http://stackoverflow.com/questions/2537238/
how-can-i-get-zoom-functionality-for-images, April 2010

[12] Guy, Romain: Making the Android UI Fast and Efficient. http://www.youtube.

com/watch?v=UApv-ZMJ51g#t=600s, July 2009

[13]

[14] Jpmaster77: PHP Login System with Admin Features. http://www.evolt.org/

node/60384, August 2004

[15] McCool, Robert ; Apache Software Foundation: Apache HTTP Server
Project. http://httpd.apache.org/,

[16]

51

http://www.xul.fr/en-xml-ajax.html
http://www.xul.fr/en-xml-ajax.html
http://developer.android.com/resources/samples/ApiDemos/src/com/example/android/apis/view/List14.html
http://developer.android.com/resources/samples/ApiDemos/src/com/example/android/apis/view/List14.html
http://developer.android.com/resources/tutorials/notepad/index.html
http://developer.android.com/resources/tutorials/notepad/index.html
http://www.readingquest.org/strat/home.html
http://www.sqlite.org/fts3.html
http://www.teachshare.org/wiki/index.php?title=Category:Techniques
http://www.teachshare.org/wiki/index.php?title=Category:Techniques
http://www.canalys.com/pr/2011/r2011013.html
http://www.canalys.com/pr/2011/r2011013.html
http://www.huddletogether.com/projects/lightbox2/
http://www.huddletogether.com/projects/lightbox2/
http://stackoverflow.com/questions/2537238/how-can-i-get-zoom-functionality-for-images
http://stackoverflow.com/questions/2537238/how-can-i-get-zoom-functionality-for-images
http://www.youtube.com/watch?v=UApv-ZMJ51g#t=600s
http://www.youtube.com/watch?v=UApv-ZMJ51g#t=600s
http://www.evolt.org/node/60384
http://www.evolt.org/node/60384
http://httpd.apache.org/


BIBLIOGRAPHY 52

[17] Nesladek, Chris ; Fulcher, Richard ; Dobjanschi, Virgil: Twitter for An-
droid: A closer look at Android’s evolving UI patterns. http://android-developers.
blogspot.com/2010/05/twitter-for-android-closer-look-at.html, May 2010

[18]

[19]

[20] Sharkey, Jeff ; Nurik, Roman ; Mahé, Luke: Google I/O Schedule App for Android.
http://code.google.com/p/iosched/, October 2010

[21] The PHP Group: Hypertext Preprocessor (PHP). http://www.php.net,

[22] Vlasov, Fedor: How to do a lazy load of images in
ListView. http://stackoverflow.com/questions/541966/

android-how-do-i-do-a-lazy-load-of-images-in-listview,

[23] Wadsack, Jeremy: Loading Images Over HTTP on a Separate
Thread on Android. http://ballardhack.wordpress.com/2010/04/10/

loading-images-over-http-on-a-separate-thread-on-android/,

http://android-developers.blogspot.com/2010/05/twitter-for-android-closer-look-at.html
http://android-developers.blogspot.com/2010/05/twitter-for-android-closer-look-at.html
http://code.google.com/p/iosched/
http://www.php.net
http://stackoverflow.com/questions/541966/android-how-do-i-do-a-lazy-load-of-images-in-listview
http://stackoverflow.com/questions/541966/android-how-do-i-do-a-lazy-load-of-images-in-listview
http://ballardhack.wordpress.com/2010/04/10/loading-images-over-http-on-a-separate-thread-on-android/
http://ballardhack.wordpress.com/2010/04/10/loading-images-over-http-on-a-separate-thread-on-android/

	Contents
	Introduction
	Overview

	Related Work
	Overview
	Books
	Courses
	Multimedia
	Online content
	Mobile content
	Conclusion

	Survey Of Demand
	Technical Part
	Overview
	Android Mobile App
	ActionBar
	Sign in screen
	Sign Up Screen
	Home screen
	Favorites
	Search
	Detailed View
	Image Gallery
	Settings

	Remote MySQL Database
	Tables For Didactic Methods
	Tables For The User Account System

	Web Server
	Header
	Sign in
	Forgot Password
	Sign up
	List of Methods
	View single method
	Edit Method
	Add new method
	View Account
	Edit account
	Admin Center

	Communication Between Mobile App and Website

	Possible Improvements
	Recommendation system
	Sorting by popularity
	User Interaction
	Optimization
	User Base Expansion

	Conclusion
	List of Figures
	List of Tables
	Bibliography



