
Technische Universität München

Distributed Multimodal Information Processing
Group

Prof. Dr. Matthias Kranz

Diplomarbeit

A Mobile Didactics Toolbox Supporting Peer Learning

Author: Yeray Garćıa Quintana
Matriculation Number:
Address:

Advisor: Andreas Möller
Begin: 30.03.2011
End: 30.09.2011

Abstract

This thesis is a second step of a large project that addressed the lack of an information
system for lecturers to manage and share didactic methods. The ultimate goal of this
project is to increase the quality of the academic education in universities and schools by
creating a tool that would help lecturers improve their teaching skills. This in turn will
immediately increase the teachers’ and students’ satisfaction. The system, however, should
not only be a ubiquitous source of information but it should allow their users to interact
with each other, and it should take advantage of this interaction to help the lecturers
find the didactic methods best suited for them. To achieve this goal, this project has
been divided in two steps. In the first step a system composed of a cloud-based database
and two interfaces has been built. The database stores information that is accessed from
everywhere thanks to a webapp1 and a mobile app for Android devices. In the second
step, which is the main focus of this thesis, the system has been optimized and enhanced
to increase user interaction. This allows the system to learn about their users and to
show relevant information based on their preferences. This second step has allowed us
to get a little closer to our final goal. However we still see much potential and room for
improvements that can turn this system into something indispensable for lecturers around
the world.

1A webapp or web application is an application that is accessed over the Internet. It is therefore based
solely on web technology and is, thus, platform independent

2

Contents

Contents 3

1 Introduction 5
1.1 Overview . 6

2 Related Work 7
2.1 MobiDics . 7

2.1.1 The System, A Short Overview . 7
2.1.2 Lacking Features . 10

2.2 Functionality approaches . 11
2.2.1 Ratings . 11
2.2.2 Comments . 20

3 Functionality 27
3.1 Automatic Update . 27
3.2 User profiles . 29
3.3 Comments . 31
3.4 Ratings . 35
3.5 Method’s Information Enhancements . 37
3.6 Search Enhancements . 38
3.7 User Interface Enhancements . 39

3.7.1 Website . 39
3.7.2 Android App . 41

4 Implementation 47
4.1 Automatic Update . 47

4.1.1 Automatic Update At Startup . 47
4.1.2 Manual Update . 48

4.2 User profiles . 49
4.2.1 Remote MySQL database . 49
4.2.2 Website . 50
4.2.3 Android App . 50

4.3 Comments . 51
4.3.1 Remote MySQL database . 51
4.3.2 Website . 52

3

CONTENTS 4

4.3.3 Android App . 54
4.4 Ratings . 56

4.4.1 Remote MySQL database . 57
4.4.2 Website . 57
4.4.3 Android App . 58

4.5 Method’s Information Enhancement . 59
4.6 User Interface Enhancements . 61

4.6.1 Website . 61
4.6.2 Android App . 64

5 Possible Improvements 68
5.1 Recommendation system . 68
5.2 Sorting algorithms for the comments . 68
5.3 Popularity algorithm . 68

6 Conclusion 70

List of Figures 71

Bibliography 72

Chapter 1

Introduction

The Internet began as a means to gain access to remote information and to facilitate
the communication between computers. However, what started as a small network of
computers has grown to become an enourmous network of people. This interconnection
of persons is what makes the Internet so important nowadays. So important that it is no
longer just a tool, but a way of life.

This has started a new trend where content is of practically no value if it cannot be shared,
rated, or commented about. Moreover, this interaction between the website and its users is
what makes high-quality content survive and low-quality content perish. This underlying
social network is what in the end decides what is good and what not. If this is so, why
not take advantage of this user interaction and use it to improve the quality of our own
content?

The Institute for Media Technology at Technische Universität München focuses on sev-
eral research topics. Some of them are networked multimedia systems, mobile multimedia,
human-X interaction, ubiquitous computing or multi-modal information processing. Com-
bining several aspects of each of this research areas we came up with a practical project
whose main goal was to take a system that had been designed for professors, doctorate
candidates or assistants to manage didactic methods right from their mobile phones, and
improve it in such a way that the user interaction helped us learn about what didactic
content was of value and let that content find its way to the user.

This work has been made possible partially thanks to the help of the didactic departments
from the Ludwig-Maximilians-Universität München, Sprachraum, and of the Technische
Universität München, the Carl von Linde-Akademie. Their constant feedback has helped
us increase the quality of the final product.

In the following section we will give the reader a short overview of how this thesis has been
structured. We hope the reader has so much fun reading about this system as we have had
building it.

5

Chapter 1 Introduction 6

1.1 Overview

This thesis has been divided in different sections to let the reader follow a structured path
along the different stages of this project.

First we will analyze the related work. We will give the reader an overview of the work
this project is based on and we will discuss the different approaches to the features we
wanted to add and enhancements we wanted to make. This will give us a good start point
to choose the direction we want to take to improve the system in such a way that brings
us to our goal in the most efficient way.

Then we will guide the reader through the new functionality. In this chapter we will
describe the system from the point of view of a regular user. For that, we will try to model
each component as a black box and focus on their output based on the user input, that is,
we will explain what it does and not how it works.

After that we will go into more detail and describe the system from the point of view of a
potential developer. For that, we will no longer treat the system as an abstract black box,
but we will explain exactly how the functionality has been made possible. We will guide
the reader through the decisions that we made along the way in the hope that we transmit
why we think this is the best approach.

Having described the achieved goals we will talk about what other improvements can be
made. This should give the readers a good point from which to start in case they were
interested in expanding this work in the future.

At the end we will come to a conclusion where we will synthesize all chapters to leave the
reader with a complete idea of what was achieved.

Chapter 2

Related Work

In this chapter we will talk about the work this project is based upon and we will discuss
the different approaches for the functionality we offer that have been found in the literature.

2.1 MobiDics

MobiDics stands for Mobile Didactics and is a system built for supporting lecturers in their
teaching. It allows them to research about different didactic methods, to create new ones,
to manage them, to mark them as favorites, to share them by making them visible to the
world, etc. The ultimate goal of this system is to increase the quality of the education that
the students get.

Next we will try to summarize how the system was built, what features it had before the
enhancements made by this project and what improvements could be made to it that we
have covered. For more details the reader is referred to the original work [10].

2.1.1 The System, A Short Overview

From a technical point of view, the system is composed of a cloud1-based database and
two clients, a website and an Android app.

Remote database

The cloud-based database is the core of the system as it contains all the necessary data that
is displayed on the clients. It is hosted remotely and that makes it ubiquitously available.
It has been implemented as a MySQL database with the following tables:

1Please note that the term “cloud” is used here to refer to the Internet as an abstract location to store
data

7

Chapter 2 Related Work 8

1. For didactic methods:

a) ddk methods

b) ddk favorites

2. For the user account system:

a) ddk users

b) ddk sessions

c) ddk active users

d) ddk active guests

e) ddk banned users

All the necessary data about the didactic methods was managed with two tables:
ddk methods where all method-related information was stored, and ddk favorites that al-
lowed the system to keep track of what methods were marked as favorites by what users.
We will see that on this side many improvements have been made.

A standard PHP user account module [14] was used and modified to adapt to the system
requirements. The tables listed above allowed the system to offer user accounts, to keep
track of signed in users and allowed administrators to manage them. Everything has
remained unchanged on this side, except for the ddk users table, that has been enhanced
to support better user profiles.

Website

The website is a client that allowed users without Android devices to access the information
of the remote database. It has been implemented as a web app and not as a desktop
application for various reasons. One is the current trend of moving everything to the
cloud, so that no maintenance is necessary on the user side. Another reason is the fact
that by making the client a website, it is accessible from any computer with an Internet
connection, without the need to install anything on the client’s computer. A third reason
was its cross-platform nature, that is, the fact that it worked regardless of the client’s
operating system.

The website has been implemented in PHP2 for the server side scripting language and in
HTML3, Javascript (with Ajax 4 functionality) and CSS 5 on the client side.

It is composed of the following pages:

2PHP: Hypertext Preprocessor
3HTML: Hypertext Markup Language
4Ajax: Asynchronous JavaScript and XML
5CSS: Cascading Style Sheets

Chapter 2 Related Work 9

1. Log in

a) Sign in (start page)

b) Forgot password

c) Sign up

2. Database viewing and handling

a) List of methods (main page)

b) View single method

c) Edit single method

d) Add new method

3. User Account

a) View account

b) Edit account

4. Administration

a) Admin Center

The Log in and Administration sections have remained unchanged or have undergone minor
changes. The Database viewing and handling section, on the other hand, has been modified
to adapt to new features such as comments, user ratings and so on. The User Account
section has also been adapted to the new user profiles, so it was also subject of major
improvements. More to that in the next chapters.

Android App

The Android app is what makes the remotely hosted data always available. Thanks to
the mobile app, we can start talking about ubiquitous access to information. It requires
therefore an Internet connection (3G or Wi-Fi) to be useful at all, but it also offers offline
capabilities and ways to temporarily store the remote data in the local database of the
device.

The mobile app is composed of the following screens:

1. Log in

2. Sign up

3. Home (List of all methods)

4. Favorites (List of all favorite methods)

Chapter 2 Related Work 10

5. Search

6. Detailed view (for each method)

7. Image Gallery

8. Settings

In the case of the Android app a lot more modifications have been made and every screen
has been updated one way or another. Some, like the Log in, Sign up or Image Gallery
screens, have changed only under the hood. Many have been modified to gain performance,
stability and scalability. Others have undergone, along with major code changes, user
interface updates, like the Home, Favorites, Detailed view and Settings screens. All this
changes will be discussed in more detail in chapter 3 and 4.

2.1.2 Lacking Features

In this section we will talk about the features that the system lacked at the beginning of
this project and we will discuss what direction we took and how we managed to achieve
our goals.

Recommendation system Although the user could filter didactic methods that were
interesting to him or her using the Search screen, there was no way to explicitly recommend
other didactic methods based on previously viewed methods, on methods that others have
marked as favorites, or on methods that have a good rating.

In this project, we have not built a recommendation engine per se, but we have paved the
way to make that possible by gathering the necessary information. In addition to tracking
what didactic methods have been marked as favorites by the users, we now also track
what methods are most visited, best rated and most commented about. This should be
sufficient data to come up with an algorithm that combines all of it into a ranking index
that depends on the method that the user is currently viewing.

Sorting by popularity An important feature that the system lacked was the ability to
sort the didactic methods by different criteria. The methods were shown in the order they
were added to the database. This was not very useful and therefore an important feature
that had to be implemented.

In this project, we offer different ways to sort methods by. In the new Home screen, the user
can now navigate through different sections or pages. In each of the pages, the methods
appear sorted by a certain criteria, for example, by ratings of the user, by overall ratings, by
most viewed, by recently viewed, etc. On the main page, however, a sorting algorithm has

Chapter 2 Related Work 11

been applied that takes into account the frequency and the recency of previously viewed
didactic methods.

User Interaction Another way of improving the system was to include social features
and support more interaction between users. It would be of high interest offering a way
for them to share their opinions. This way the users could communicate with each other
and learn about other perspectives or ways of using the didactic methods.

In this project we paid much attention to this feature. We added the ability to comment
on didactic methods and to rate them. This way the users could learn from the reviews of
others and could get a notion of what others think of the didactic methods.

Optimization The initial code has been significantly improved. Many classes have been
rewritten from scratch having new features in mind and making them more efficient in terms
of performance, battery life and storage. We have tried to make the code more elegant
and modular to allow it to scale better. And we have implemented various additional
helper classes that integrate with the rest of the classes and make it easier to add new code
without much reordering.

2.2 Functionality approaches

In this section we will take a look at different Android apps and websites that implement
similar features to those offered by this project’s enhancements and we will discuss their
advantages and disadvantages.

The websites that have been chosen for this, for being popular and depending on ratings and
comments to be successful, are Android Market [11], YouTube [23], Amazon [2], eBay [8]
and Facebook [9]. Each one of this sites offers its own type of product, but they all rely in
some way on ratings and comments for their products. In the next sections, we will take
a closer look at them and discuss the advantages and disadvantages of their approaches to
those features.

2.2.1 Ratings

Nowadays nearly every site offers a way for the users to rate items. This items can be
books, movies, pictures, videos, articles, etc. In this sections we will take a look at the
different approaches that have been taken throughout the Internet regarding the ratings
feature.

Chapter 2 Related Work 12

Android Market - The Website

The Android Market offers apps for Android devices. The website is divided in sections
allowing the user to get an overview of what is popular in different categories. Examples
of those categories are Top Paid, Top Free, Top Grossing, Top New Paid, Top New Free
and Featured.

When the user finds an interesting app and clicks on it, an information page is shown. The
user can then see the rating on different parts of the screen. As shown in figure 2.1 the
ratings appear in following sections:

• Next to the name of the app: The main location for the rating is in the top
left corner of the web page. The user can immediately see if the app is popular by
looking at the number of colored stars and the number of users that have rated this
app.

• On the right side: The rating shown in the center top part of figure 2.1 appears on
the right side of the actual Android Market page along with other relevant information
about the app. Since this section of the page summarizes important characteristics of
the app, it makes sense that the rating is also shown, as it represents the popularity
of the app.

• Above the reviews: Right above the reviews about the app there is a section where
relevant information about the ratings is shown, for example, how many users have
rated the app with 1, 2, 3, 4 or 5 stars, the number of users that have rated and the
average rating rounded to one decimal place.

• In each review: Users can comment on an app. The Android Market calls this
comments “reviews”. To write a review the user would have to go to the “User
Reviews” tab, click on the button “Write a review” and a form would be made
available to rate and write a comment about the app. The rating would then appear
next to the username in the comment (see figure 2.1 middle and bottom).

Let us now discuss what are the advantages and disadvantages of this approach.

Advantages

• The main location for the rating is very appropriate. According to eye-tracking
studies [18], the top left corner of a web page is the area where a potential reader
is more likely to look at when the page loads. So the first thing the user sees when
looking at the web page is the name of the app, a button to install it and its rating.

• The ratings are shown further down in a more statistical way and with more infor-
mation that the user can find of value.

• By making the rating appear in each comment or review, the user can quickly browse

Chapter 2 Related Work 13

Figure 2.1: Ratings in the Android Market Website

to and read more interesting comments, for example, from users who are not satisfied
with the product.

Disadvantages

• The fact that the rating appears in so many areas of the website can be a little
redundant and confusing. It may lead the user to think that it refers to a different
statistic when in fact it does not.

• There is no easy or quick way to rate an app. The user must guess that it is mandatory
to write a review to rate the app. Although it is possible to just rate an app and not
comment on it by leaving the appropriate fields empty, the form does not indicate so.
This could maybe increase the quality of the ratings, since only those users willing
to write something about the app are the ones that rate it, but it certainly reduces
the number of users that would rate if it were more accessible.

Chapter 2 Related Work 14

Android Market - The App

In figure 2.2 the reader can see how the ratings are implemented in the Android Market
mobile app. As in the website, there are different sections where the user can discover apps
under different categories. In the list of apps, the user can see their icons, their names,
their price and their ratings. After clicking on an app, would show more information about
the app including a section to rate and review the app. Clicking on it would show a form
to enter a rating and an optional comment.

As in the website, the ratings appear always next to the name of the app. In the detailed
view, the user can also see how many users have rated it and a section is made available
allowing to easily and quickly rate and review it.

Figure 2.2: Ratings in the Android Market App

Advantages

• As in the website, the rating is shown always where the user can easily see it. This
time, however, no multiple ratings are shown, eliminating the redundancy introduced
by the website.

• Next to the reviews appear also in the mobile app the ratings that the author of the
review has given to the app.

• The section to rate and review the app appears in this case in an accessible location.
Although, the both actions appear always together, it is at least more intuitive to

Chapter 2 Related Work 15

rate the app as in the website.

Disadvantages The disadvantages introduced by the the website have been improved in
the mobile app. The ratings and the reviews are always shown together, encouraging the
user to comment. However, the same problem remains that it is possible that the user
does not rate the app thinking that a comment is also mandatory (which it is not, but the
user interface does not indicate so).

YouTube - The Website

YouTube is a video-sharing website. Their users can upload videos to share them with the
world. Below the video the user can find a series of buttons with which some actions can
be performed. A like/dislike button is available to let the user rate the video. On the right
side, the number of views is displayed and right below it the likes to dislikes percentage
(see figure 2.3).

Figure 2.3: Ratings in the YouTube Website

This is interesting since, instead of using a five stars widget to rate the video, YouTube
went with a like/dislike button. In an article posted in 2009 [19] YouTube published the
graph shown in figure 2.4. It represents the number of times that a video has been rated
with 1, 2, 3, 4 or 5 stars.

As can been extracted from the graph, the vast majority of the users chose to rate with
5 stars. Some of the users rated with 1 star, but almost nobody rated with 2, 3 or 4
stars. It seems that the users either hated a video or they loved it. If the video prompted
indifference, the user did not took action at all. So in this case, the like/dislike button
made more sense.

Advantages

• Since a like/dislike button takes less thinking than rating in a 5 star scale, it is more
likely that the users click on those buttons. Maybe those users who did not rated
with 2, 3 or 4 stars in figure 2.4 would have rated if a like/dislike button, was a
available.

Chapter 2 Related Work 16

Figure 2.4: 5-Star Ratings in YouTube

• The rating appears as a visual representation of how many have liked versus how
many have disliked the video.

• All the information is in one place and near the important area of the page.

Disadvantages Specific ratings are not possible, but this may not be important depend-
ing on the offered content.

YouTube - The App

The mobile app follows the same principle of the website. As shown in figure 2.5, the user
can like or dislike a video by clicking on the corresponding buttons at the top of the screen.
Information regarding the number of views and of users that have rated is displayed below
the video next to the name of the app.

Advantages The buttons to rate the video are always accessible as part of the ActionBar
at the top.

Disadvantages

• The number of likes and dislikes appear written in text, without any visual repre-
sentation, as opposed to the website. The user is therefore very likely to miss this
information as it is easily confusable with the rest of the text in the screen.

• The ratings do not appear in the lists of videos, so the user cannot learn about its
popularity until the screen to view the video is open.

Other Approaches

As the reader can learn from the previous examples, there are many approaches to how
items in a website should be rated. In this section we will discuss other, more general

Chapter 2 Related Work 17

Figure 2.5: Ratings in the YouTube App

approaches. After giving a quick overview of them will proceed to indicate what advantages
and disadvantages each approach has.

There are mainly three types of ratings:

• Like buttons

• Like/dislike buttons

• Scales

Let us take a closer look at each of them and show with some practical examples how they
actually work.

Like button A like button is a way to indicate that the user is satisfied with the informa-
tion just consumed. Examples of like buttons are those available in Facebook or the newly
released +1 button of Google Plus [12]. The main characteristic of this kind of rating is
that there is no opposite action, that is, there is no way to rate negatively: either the user
likes the information and takes action or dislikes it and does nothing.

Advantages

• No negative ratings are given, encouraging the author of the content to publish more
things.

Chapter 2 Related Work 18

• Almost no effort to express approval, increasing the number of users who rate.

• Very likely to be used if the user experiences even a hint of positive feeling, since not
confronted with other possible ratings.

Disadvantages

• Number of positive ratings only useful if compared with the number of positive ratings
of other item.

• It is not possible to know how many users have disliked the item.

• No way to filter out really bad items.

• Mediocre content more likely to be confused with quality content.

Like/dislike button A like/dislike button is very similar to the like button. Examples of
like/dislike buttons are those found in YouTube6, Digg7 and Stackoverflow 8 just to name
a few. The only difference is that an opposite action is also available, that is, the users can
also express their dissatisfaction by clicking the dislike button. Although it may seem like
it does not make much of a difference, this comes with some consequences.

Advantages

• Users can also rate negatively, giving a better overview of the ratio of likes to dislikes
of the users who visited the website.

• Since items can now have only negative ratings, it is easier for the user to avoid those
ones or to view them, for example in the case of a bad review of a product.

• Mediocre content can now be distinguished from quality content, since users with a
negative opinion also have a say.

• Negative ratings can encourage the author to post better quality content

• More realistic way of thinking about an item.

Disadvantages

• Negative ratings can discourage the author to post more content

• Average content is grouped either with really good or with really bad content

6http://www.youtube.com
7http://digg.com
8http://stackoverflow.com/

Chapter 2 Related Work 19

Scales Scales are the third type of ratings that we are going to discuss in this work. The
most commonly used is the 5-star rating: A 5-star widget is made available where the
user can click on the stars, which represent a number in a scale. There are variations of
this type of rating. For example, instead of stars, other symbols can be used to represent
the content in a more precise way. The length of the scale can also vary, for example,
10-star ratings are also common. Examples of this kind of ratings can be found in sites
like Android Market, Amazon, eBay or IMDb.

Advantages

• The users can express their opinion or how much they liked the item in a more precise
way.

• They low-quality, average and high-quality products can be easily distinguished and
filtered.

• It is intuitive as it is commonly used throughout the Internet

Disadvantages

• It requires more effort to rate an item, since it must be categorized within a scale.
The larger the scale, the more difficult to decide.

• Different number of stars can mean different things for different users. Some users
may rate an item with 3 stars if they find it ok, but others immediately associate
any rating below 4 as bad.

• Depending on the type of content, it can be useless if the majority of users vote with
either 1 star or 5 stars.

Conclusions

In this section we will summarize what we have observed in the literature and related
work regarding the ratings. After considering the different approaches discussed in the
previous sections and contemplating their advantages and disadvantages, we will come to
a conclusion of what we think is the best approach to our system and we will explain why.

MobiDics is intended for lectures who want to learn more about existing didactic methods
to improve their teaching. It can then be assumed that a lecturer that reads and learns
about a didactic method in MobiDics is going to apply it at some point in the near future.
After applying the didactic method and experiencing it in practice the lecturer can come
back to the app and rate it, mark it as favorite or even comment on it in order to give
some valuable feedback to the teaching community.

Chapter 2 Related Work 20

MobiDics is therefore not a service where their users read content and then they like it or
not, but it is more of a tool that a lecturer can use to learn about new ways of teaching
in order to use them later and come back to write notes about how helpful or successful
it was. So we have decided that the like or like/dislike buttons did not adapt well to the
system goals.

We did not want to lose the advantages of such type of rating, such as the fact that they
require little mental effort to use, and we wanted to keep the disadvantages of this kind of
rating as inexistent as possible. Therefore we positioned the rating always in a visible and
accessible place in the website as well as in the mobile app. We also made it independent of
user reviews to increase the number of ratings, but made it available next to the comment
form in case the user wants to rate after writing a comment.

Another way to make it effortless to rate, even with a larger scale star widget, is to make
each rating distinct [1, 22]. Therefore we show a little description when the user hovers
with the mouse over a specific number of stars.

To let the user know the rating that the author of a comment has given to the didactic
method the comment is written about, an indicator is shown also in each comment. This
lets the user scan faster through the list of comments/reviews.

2.2.2 Comments

Having taken a look at the related work from the perspective of the ratings, let us look at
them from another angle: the comments. This feature is important since one of the steps
to increase the user interaction of the system was to add social features such as this one.

All the websites we discussed in the previous section provided in addition to the ratings
a way for the users to comment on the item. Some of them designed the comments as
reviews for the products being offered, others just to let the users express an opinion or
leave a note.

Android Market

Comments in the Android Market website are referred to as “reviews”. This should give
the user a hint about what kind of information should be written in the comments, namely,
an opinion about how the app works.

The page with the information about an app is divided in 4 sections accessible through a
series of tabs shown at the top: Overview, User Reviews, What’s new and Permissions. In
the Overview section, which is the one that is shown by default, the user can scan through
the most important characteristics of the app. Right at the end of this section, the last
few reviews are shown, allowing the user to see what is being said lately about the app.

Chapter 2 Related Work 21

A link is provided below these few reviews to go the second section, the User Reviews tab,
where the rest of the reviews are listed. In this section, the user can see the average rating
along with a statistical overview of all the votes and, right below, the list of user reviews
preceded with a button to write one, in case the user wants to leave an opinion.

In figure 2.1 the reader can see the form the user is shown when clicking on the Write a
review button (middle) and the design of each review after it has been submitted (bottom).

Next to the each review there are three links to mark a review as helpful, as unhelpful or
as spam.

Advantages

• The user reviews have their own section, so they do not interfere with other infor-
mation about the app.

• The most recent reviews are shown at the bottom of the main section for a quick
overview about user opinions after the user has finished reading about the app.

• The reviews are always associated with a rating which is also shown along with the
submitted text. This allows for navigation to the most relevant comments.

• The reviews can be voted up or down giving the community the power to move the
most relevant reviews to the top.

• Navigating through the user reviews does not require a page reload, making it feel
snappier.

Disadvantages

• The form to enter the new review is quite hidden. The user has to go to the User
Reviews section, search for the button Write a review and click it in order to view
the reviews form.

• There is no way to sort the comments.

• The reviews require a title in addition to the comment, making it more complicated
for the user to write a review. Since it is optional, despite the fact that this is
not indicated, the first few words of the comment are used if no title is entered.
When other users then start reading the title in the submitted review, they notice
it is incomplete, so they continue with the comment only to find out that they are
reading again the text they have just read in the title. This can be annoying.

Chapter 2 Related Work 22

Amazon

YouTube

The YouTube website shows the comments right below the rating information of the the
video. As shown in figure 2.6 there are two sections: Top Comments and All Comments.
In the Top comments section the two comments with the most positive votes are shown.
The rest of the comments are shown in the All Comments section ordered by recency, that
is, the newest comments are shown at the top. Above the list of comments, there is an
empty text input where the user can enter a comment and submit it. Hovering over each
comment would show a series of buttons with which the user can post a reply or vote
that comment up or down. Replies to other comments are preceded with “@username”,
meaning that the comment is a reply to a comment posted by the user “username”

Figure 2.6: Comments in the YouTube Website

Advantages

• The two most popular comments are always shown at the top.

• The text input is visible and easily accessible. This removes all the barriers and
encourages the user to comment.

Chapter 2 Related Work 23

• The user can also see what is the latest that has been said about the video, since the
most recent comments are shown at the top.

• Each user can rate and reply to comments making their ranking community-driven.

Disadvantages

• Only the two most popular comments are shown at the top. Sometimes this can be
enough, but it is possible that the third and fourth most popular comments are also
interesting but get buried in the list of comments as new ones are added.

• Replies are not indented and following conversations can be confusing.

• If one of the top comments is a reply to another one, it is not trivial to find that one,
which can also be interesting for the user.

• Comments cannot be sorted by other criteria, although a link to view all comments
is provided in case the user wants to read the first ones, for example.

Facebook - The Website

Facebook is a social networking service and website. Users may add other users as friends
and share content with them. Content that has been shared can be liked or commented
about. The number of likes and the list of comments appear below each shared post. The
comments may appear collapsed or expanded, depending on the number of comments. A
link to see the comments that have been collapsed is available. They are sorted by date
in descending order, meaning that the newest one is shown at the the bottom. Right
below that one, there is a text input field for the users to write their own comment. Each
comment can also be liked and the number of likes appear next to it. This, however, does
not seem to contribute to the order in which the comments appear. Next to each comment
the profile picture of the author is shown. Clicking on it would redirect the user to the
profile page of that user.

Having exposed all the features and design approaches of the website regarding the com-
ments, let us take a look at their advantages and disadvantages.

Advantages

• Comments are easily accessible below the actual content, encouraging the users to
post their opinions.

• The fact that long lists of comments appear collapsed by default avoids that the web
page gets filled with just comments.

Chapter 2 Related Work 24

• The author of the comments can be easily differentiated by looking at their profile
picture.

• More information about the author is available just by clicking on his username or
profile picture.

• The user can see if a comment is popular by looking at its number of likes.

Disadvantages

• There is no visual clue that a comment is actually a reply to another one, as it does
not appear indented and it is not indicated otherwise.

• Although sorting comments in order of arrival allows the user to follow the conver-
sation until the most recent one, the user is required to scroll down to know what is
the most recent comment that has been made about the content.

• The comments are loaded in chunks. To view older comments, the user must click
on a link that would load them above the ones that are currently displayed. This
behaviour, although consistent with the sort order, can be confusing.

• Despite the fact that comments can be rated with like buttons, there is no way to
sort by most popular.

Facebook - The App

The Facebook mobile app behaves very similar to the website. When browsing through the
different posts, the number of likes and of comments is displayed below each one of them
(see figure 2.7 left). Clicking on the post would open a new screen where the it is displayed
alone (see figure 2.7 right). In this screen a button is provided to like the post and the list
of comments is displayed right below. A floating text input is also provided at the bottom
of the screen which stays there regardless of the scroll position, always ready for the user
to write a new comment.

Advantages

• The user can see in the list of posts if it is popular by looking at the number of and
of comments.

• In the single post view, the comments are displayed right below the content, where
the user can follow the conversation from top to bottom.

• The text input to write a comment is always visible and very accessible.

Chapter 2 Related Work 25

Figure 2.7: Comments in the Facebook App

Disadvantages

• As in the website, there is no way to specifically answer to another comment.

• As opposed to the website, comments cannot be liked from the mobile app.

• To view the most recent comment the user would have to scroll to the bottom of the
screen.

• There is no way to sort comments by other criteria.

Conclusions

In this section we will summarize what we have observed in the literature and related
work regarding the comments. After considering the different approaches discussed in the
previous sections and contemplating their advantages and disadvantages, we will come to
a conclusion of what we think is the best approach to our system and we will explain why.

As mentioned in section 2.2.1, the app is intended for lecturers who would like to try new
ways to teach. Therefore the comments are more of a way for lecturers to give a short
review of the didactic method than a means to just leave a note. The lecturers should be
able to answer one another to start a discussion and the community should be able to vote
the comments up or down to push the most popular to the top and the least popular to
the bottom.

A way to sort methods by different criteria should also be available. This way, new users

Chapter 2 Related Work 26

could not only see the most popular at the beginning, but could also order by recency to
see what has been said lately about the current didactic method. However, the reordering
should not break conversations, which should be moved as a unit. This way new users can
follow the conversation where the most popular review has been given.

Comments are directly related to the didactic methods and should therefore be shown in
the detailed view at the bottom, so that the user can read about other user’s opinions
after having read the relevant information. However, since it is not likely that users read
the whole list of comments, they should be loaded in chunks, providing a button to load
additional ones should the user be interested in reading more.

Chapter 3

Functionality

In this chapter, we will get into the details of what functionality has been added to the
system. Below we can see an overview of them:

• Ability to auto-update the Android app

• User profiles

• Ability to comment on didactic methods

• Ability to rate methods

• Enhancement of the methods’ information

• Enhancement of the Search screen

• Improvements in the user interface

• Code optimizations

3.1 Automatic Update

This feature was the first one to be implemented in the new version of MobiDics because
this would allow the users who wanted to use it and test it in the alpha development phase,
to get the latest version as soon as a new one was released. On the other hand, as long as
the Android app is not released through the Android Market (https://market.android.
com/), this functionality can serve as a means to make a manual update of the app at any
time.

How It Works When the user signs in, he or she gets redirected to the Home screen. On
this screen, before anything else happens, a query is sent in the background to the server
asking for the newest data. At this point, the server checks whether an update is available
and responds back to the client with that information along with the current stand of the
online database.

27

https://market.android.com/
https://market.android.com/

Chapter 3 Functionality 28

If a newer version is available, a dialog is shown to the user. The dialog provides a
button to update the app immediately and another one to cancel the process. In addition
to those buttons, a checkbox is also available to indicate that the chosen action should
be remembered and, therefore, performed in the future without prompting the user (see
figure 3.1). If the user clicks on “Yes”, a background task is started which takes care of
downloading the executable of the newer version and installing it. If the user clicks on
“No” or “Cancel”, the dialog gets dismissed.

Figure 3.1: Automatic Update

In the Settings screen there are a couple of preferences related to this feature: “Check for
new version” and “Update now...” (see figure 3.2).

Check for new version This preference allows the user to choose whether the Android
app should check for a new version at startup. In that case, the process explained above
will take place. Otherwise, no dialog will be shown to the user.

Update now... This preference is a way of triggering a manual update. This will start a
background task that communicates with the server and that will take care of downloading
the newest version. Since this update is initiated by the user, no dialog is shown, but the
latest version is downloaded if it is available.

To learn more about the inner workings of this feature and how it was implemented, please
refer to section 4.1.

Chapter 3 Functionality 29

Figure 3.2: Update section in the Settings screen

3.2 User profiles

The next step was to modify the system in a way that would allow its users to interact
with each other. We started by enhancing the user profiles. Some personal and academic
fields were added (see figure 3.3). The purpose of this enhancement was to allow the users
to view methods created by a certain subset of users, or to view the ratings that this subset
has given to a certain didactic method. This way, a lecturer could get some feedback from
those who are working in the same areas as them, for example, making the search results
much more relevant.

How It Works As can be seen in figure 3.3 there is a web page for viewing a user profile
(profile viewer) and another one for editing it (profile editor).

Profile viewer The profile viewer is composed of a profile picture and a list of fields with
information about the user. It is public and can therefore be accessed by anyone. If the
user wants to access his or her own profile, he or she just needs to click on the “My account”
link at the top right corner of any page throughout the website. On the other side, if the
user wants to access the profile of another user, he or she just needs to click the username
of the desired user wherever it is displayed, for example, in a comment. Only when a user
is viewing his or her own profile, a link to edit the profile is displayed. Clicking on it would
redirect the user to the profile editor.

Chapter 3 Functionality 30

Figure 3.3: Enhancement of the user profile

Profile editor The profile editor is composed of a form populated with the information
shown in the profile viewer. This form, once submitted, allows the user to update his or
her personal or academic information and to change the visibility of this information. The
file form at the top allows the user to upload a profile picture. The other fields are just
normal text edit fields or dropdown fields as shown in forms throughout the Internet. Some
of the dropdown fields are dependent of others and are updated accordingly when those
fields change. One example is the “University” and “Faculty” fields: When the university
is changed, the dropdown field for the “Faculty” is updated with the available faculties in
that particular university. Some dropdown fields contain an entry labeled “Other” that
would display a text edit to enter free text when chosen. Finally, since profiles are accessible
by anyone, there is a column labeled “Private?” that contains check boxes to mark certain
information as private. The fields that are marked as private are only used to apply filters
anonymously to search queries, but are not shown in the profile viewer.

The mobile app has been updated to reflect this change (see figure 3.4). To access the
own profile from the mobile app, the user taps on the menu button. In the menu that
is shown, the user can click on the “My Account” menu item (left) and the My Account
screen (right) would be shown. To access the profile of another user, for example of one
that has posted a comment, the user would tap on the comment and a Quick Actions menu
would pop up (center) where he or she can choose to open the desired user profile. The
My Account screen then syncs with the remote server and displays the most up-to-date
information.

Chapter 3 Functionality 31

Figure 3.4: My Account screen

To learn more about the inner workings of this feature and how it was implemented, please
refer to section 4.2.

3.3 Comments

Staying with our goal in mind of offering more user interaction, we added commenting
capabilities to both the website and the Android app. Basically, a user can now see a list
of comments and a form to post a comment of their own at the end of the detailed view
of every didactic method (see figure 3.5). This way, the user can read opinions of other
users about a certain didactic method and get additional information not available in the
method’s description.

How It Works

Website

As can be seen in figure 3.5, a comment form is available at the end of the detailed view
page (left). Clicking on the text area designated for the comment will trigger an animation
that will expand it in size and show helpful buttons as well as a rating bar (right).

Chapter 3 Functionality 32

Figure 3.5: Comments on the Website

Posting a comment After the user has inserted a comment and pressed on the “Post”
button an Ajax 1 request is sent in the background and the comment list is refreshed
containing the new inserted comment. Ajax has been used here to avoid having to refresh
the page after the comment has been inserted. However, normal form submitting behavior
is also possible if Javascript is disabled in the browser.

Canceling posting a comment If the user decides that he or she does not want to write
a comment after all, he or she can click on the “cancel” link. The inserted text will be
cleared and an animation will be triggered that will collapse the form to its initial state.

Rating a method The rating bar allows the user to rate the method while he or she is
writing the comment. The same rating bar is also at the beginning of the page to get a
first glance of what rating has been given to the method the user is currently viewing.

Loading more comments For the sake of performance and short loading times, the
comments’ list is displayed in chunks. Only the first few are shown at the beginning and,

1Ajax: Asynchronous JavaScript And XML

Chapter 3 Functionality 33

if the user wants to see the rest, a “Load more comments” button is made available at the
end of the list, that will load the next chunk of comments. This process can go on until
there are no more comments to load. In this case, the “Load more comments” button will
not be shown.

Voting a comment When the user hovers over any comment with the mouse, some
buttons appear that allow the user to vote that comment up or down or to reply to that
comment. Clicking on the “Thumbs up” button () will give a positive vote to that
comment whereas clicking on the “Thumbs down” button () will give a negative vote to
that comment. This votes are used to sort them by popularity so that the most interesting
comments appear at the top. There are certain rules to vote a comment though: A user
cannot vote his or her own comments neither up nor down and once the user has given a
positive vote, for example, he or she cannot vote that comment up again. However, he or
she could vote that comment down twice, once to return to neutral vote and again to give
that comment a negative vote. This is also the case in the other direction. When the user
breaks this rules a message is shown on screen.

Reply to comments Next to the buttons to vote a comment up or down, there is another
button to reply to that comment (). Clicking on it would trigger an animation that
will show a text area below the comment where the user can write his or her reply (see
figure 3.5 right). After clicking on the “Reply” button below that text area, the reply will
be sent in the background to the remote server using Ajax and the list of comments will
be refreshed containing the new comment indented below the other one.

Android App

The method’s detailed view of the Android app has also been modified to include the same
functionality offered by the website (see figure 3.6).

When the user is on the detailed view screen of a method, he or she can scroll up or down
to read about it. If the user scrolls down enough, right after the last piece of information
about that method, the list of comments appears preceded by a text input to insert a
comment (figure 3.6 left). If he or she continues to scroll down to view more comments,
the text input stays fixed on top while the list of comments continues to scroll under it
(figure 3.6 middle). This allows the user to have access to the comment form regardless of
what comment he or she is reading at the moment.

Posting a comment When the user taps on the text input, a floating form appears
allowing the user to type his or her own comment while still being able to scroll through
the list of comments in the case he or she wants to read something that he or she wants
to include in his or her contribution (figure 3.6 right).

Chapter 3 Functionality 34

Figure 3.6: Comments in the Android App

Canceling posting a comment In that same floating form there is a “Cancel” button
that clears any text that has been entered and hides the form again to return to the
previous screen.

Rating a method If the user wants to rate the method after he or she has written the
comment, a rating bar is made available to that purpose. However, it is optional, but
showing it in the comment form encourages the users to rate.

Loading more comments In the Android app the new chunk of comments is loaded
automatically when the user scrolls down to the bottom of the current chunk. So there is
actually no button the user needs to tap on to load more comments. However, if for some
reason the comments cannot be loaded (for example, if there is no network connection or
some other error occurs), the list item at the end will show an error message with a “Retry”
button that the user can use to try loading the next chunk of comments again. This will
turn that error message into a “Loading...” message and, if no other errors occur, the new
chunk of comments will get appended to the current one.

Voting a comment Clicking on any comment will show a Quick Actions pop-up where
the user can see two buttons to vote the current comment up or down, contributing to
showing the most popular comments at the top and the less popular further down.

Chapter 3 Functionality 35

Reply to comments On the same Quick Actions pop-up that shows up when clicking on
a comment, the user can also see a button to reply to that comment. Clicking on that Reply
button will show the a floating form (the same mentioned above in paragraph Posting a
comment) that will allow the user to post a reply.

To learn more about the inner workings of this feature and how it was implemented, please
refer to section 4.3.

3.4 Ratings

Comments are great to get a notion of what other users think about a specific didactic
method. But they are not that good if one just wants to get a quick overview of what people
think about it or to know how popular it is. Here is where the ratings come in. By allowing
users to rate didactic methods with stars, we can easily sort methods by popularity. The
user can see at a glance how popular a method is and it is more likely that more users
contribute since it does not require so much effort as writing a comment: It is just a mouse
click away.

Website

In the website the ratings appear at the top of the View Method page (see figure 3.7). This
allows the user to know right away how popular this didactic method is. On the left side,
there is a fixed rating. This rating represents the average rating this method has received.
The rating can be retrieved from the number of highlighted stars, whereas the number
of votes is shown next to the widget. On the right side, there is a user-modifiable rating
widget. There are other contexts where the rating stars appear. One example is in the
home page, if the user selects the My top rated or the Top rated categories. This allows
the user to sort methods by the ratings they have received. Another example is next to the
usernames in the comments (see figure 3.5). This allows the user to see what rating the
user that wrote the comment has given to the didactic method he or she is commenting
about. This may help the user understand the tone of the comment.

Android App

In the Android app the ratings appear also at the top of the Method screen. As can be seed
in figure 3.8 there are, as in the website, two types of rating bars. One that is fixed and
shows the average rating given to this method by all users who have voted, and another
one representing the rating given by the current user. The former is smaller and appears in
the header section to indicate that it is merely informative and, hence, not clickable. The

Chapter 3 Functionality 36

Figure 3.7: Ratings (website)

latter is bigger and with clickable-looking stars to indicate that the rating can be changed
using those stars.

How It Works

Website

When the user navigates to the View method page, he or she sees a rating bar on the
right top corner. The user can rate the didactic method using this widget. It shows the
rating that the current user has given to the method. If the user has not rated this method
yet, though, all stars in the widget are gray. Hovering over this widget with the mouse
will highlight the stars depending on the position of the mouse. Putting the mouse away
without clicking any of the stars will reset them to the previous state, that is, it will
show the rating the user had given to the method. Clicking on any star will update the
rating. A message is shown to the user to inform him or her that the operation completed
successfully. This rating however can be changed in the future if the user changes his or
her mind.

Chapter 3 Functionality 37

Figure 3.8: Ratings (Android)

Android App

When the user navigates to the Method screen of the Android app, he or she sees again
a rating bar at the top. This rating bar is a standard Android widget and has therefore
the same look and feel as other rating bars used throughout the Android OS. Clicking on
a star will record the rating for the current user and will update the little indicator bar
having the new rating into consideration. If there is no network connection, the rating is
stored temporarily in the device’s local database. The next time a request to update the
local database is made, either automatically at startup or manually by the user, the offline
tasks, including favorites and ratings updated while offline, are sent first to the server and
only then the new updated database is received.

To learn more about the inner workings of this feature and how it was implemented, please
refer to section 4.4.

3.5 Method’s Information Enhancements

Apart from all the social features mentioned in the previous chapters, the actual informa-
tion about the didactic methods themselves has undergone some changes worth mentioning.
This changes have to do mainly with the type of information that stores each field. As you
can see in picture 3.9 some fields are no longer dropdown elements but are now multiple
choice check boxes. The user can then check as many check boxes as he or she wants, so

Chapter 3 Functionality 38

any combination of them can be inserted in the database without the need to preconfigure
a fixed number of those combinations in the server. Some special fields have been added
that require a different kind of input. This fields represent a number in a scale and have
therefore been implemented as a slider. Finally, there is a another kind of field that not
only allows for any combination of some predefined check boxes, but also allows the user
to add any additional items.

How It Works Fields like the Social form or the Course type are basically a list of check
boxes that the user can check or uncheck, so there is not much functionality here apart
from the fact that any combination of those check boxes is now possible, as opposed to the
dropdown elements, which only supported predefined combinations that the maintainer of
the database and website could change.

Fields like the Phase and Subphase, though very similar to the Social form and Course
type ones, have a subtle but important difference: They are dependent on one another.
This means that clicking on different check boxes in the Phase category, will enable or
disable the sections of the Subphase category that are directly related to the former ones.

The field Material has also undergone a major change. It was initially implemented as
a simple text field, where the user could enter any kind of text. Although this was very
flexible, it was not realistic since, in the end, the materials used in the classrooms are of
finite nature and tend to repeat themselves. So, a list of predefined materials made sense,
but only if the user could manually add additional ones as their need arises. So now the
field Material is implemented as a list of check boxes with a text input at the end that
allows him or her to add new ones. As an extra feature, a red cross () appears when
hovering with the mouse over the check boxes which allows the user to delete previously
added materials that are no longer needed.

Finally, a custom slider has been implemented for the field Heterogeneity. The heterogene-
ity of a group is a characteristic that is measured using a scale from 0 to 10. The left
end of the slider represents a homogeneous group, that is, a group where everybody has
the same background knowledge, whereas the right end of the slider represents a hetero-
geneous group, meaning exactly the opposite. The user can then indicate what degree of
heterogeneity the group has by dragging the handle along the slider.

To learn more about the inner workings of this feature and how it was implemented, please
refer to section 4.5.

3.6 Search Enhancements

In addition to the enhancements in the method’s information, the search fields had to
adapt to support the new fields. Examples of this fields can be seen in figure 3.10.

Chapter 3 Functionality 39

Checking and unchecking the checkboxes as well as moving the slider would trigger an
update of the list of methods which changes dynamically as new values are selected.

3.7 User Interface Enhancements

Although much functionality has been added to the website and mobile app, we have tried
to do so by making the least user interface changes possible, that is, we wanted the design
to remain as simple as it was, despite the fact that many improvements have been made
under the hood.

However, some parts of the user interface required some modifications due to the lack of
some important features or to make the app more intuitive and snappier to use.

In this section we will summarize the changes in the user interface that have not been
mentioned in previous sections for not being directly related to the features exposed in
them.

3.7.1 Website

Home Page

As a way to sort the didactic methods, we have introduced a series of categories which would
display the methods ordered by different criteria. This categories are: Home, Favorites,
My top rated, Top rated, Recently viewed and New / Updated (see figure 3.11).

Clicking on this categories would reorder the list of methods by the corresponding criteria
and eventually add new relevant columns to the view. Let us take a closer look to each
one of them.

The “Home” category This category is the default one and shows one column with the
title of the didactic methods, their icon and a star to mark them as favorite. This view is
ordered by relevance in the same way the most relevant URLs are shown when a user clicks
the address bar of a web browser. In fact, the underlying algorithm is based on the known
freceny algorithm [16] used by the Mozilla Corporation in the so-called AwesomeBar of
the Firefox browser. This algorithm combines the frequency and the recency (hence the
name) of the most viewed items (in our case, didactic methods) and calculates a ranking
that the table can then be ordered by. To learn more about the algorithm the reader is
referred to section 4.6;

Chapter 3 Functionality 40

The “Favorites” category This category is also an important one because it allows the
users to access their favorite methods. Therefore it is placed right below the Home category.
Everything that applies to the Home category, applies also to this one: only one column
is shown with the title, icon and star of each didactic method and they are ordered using
the same algorithm. However only starred items appear in this view. Clicking on the star
next to the title would unmark that didactic method as favorite, turning the star to gray.
When the view is refreshed that item will not appear.

The “My top rated” category This category may also be interesting from the user’s
point of view. Here the list is sorted by the rating that the current user has given to various
didactic methods. This way, the methods that the user has rated with 5 stars appear at the
top, whereas those that the user has rated with 1 star appear at the bottom. The methods
that has not been rated yet by the user appear below the rated ones ordered again by their
frecency. To get an overview of the rating that has been given to each didactic method,
the column “My ratings” is shown which displays the corresponding 5-star indicator.

The “Top rated” category This category is again very similar to the previous one. On
this view, however, the methods are not listed ordered by the rating that the current user
has given to them, but the global average rating is considered instead. Accordingly, rather
than “My ratings”, the column “User ratings” is shown. This view allows the users to see
what didactic methods are popular and lets them discover good ones that they may not
have learned about yet.

The “Recently viewed” category This category shows the didactic methods that the
current user has viewed recently. The list of methods is sorted by recency in descending
order, meaning that the method that has been most recently viewed is shown at the top.
The column “Last accessed” is also shown, where the user can see a human-readable date
for each method in the following format: 1 hour ago, 3 days ago, 2 months ago, etc. For
those who would like to see a more specific date and time, they can just hover with the
mouse over the human-readable date and a standard numeric date will appear in a tooltip.

The “New / Updated” category This category shows the didactic methods that have
been recently created or modified. This is an interesting category since it gives new methods
the opportunity to be viewed by a greater number of users. This should shorten the time
that it can take for a new method to appear in the other categories. In addition to the
standard column with the method’s title, icon and star, a column “Date modified” with
human-readable dates in the same format as in the previous category is shown.

Nevertheless, this views are not fixed and offer great flexibility. Once in a certain category
the user can add new columns, remove existing ones, sort by other columns by clicking on

Chapter 3 Functionality 41

the headers, navigate through the different pages, etc. By clicking again on the category
links, however, the views are reset to their initial state.

3.7.2 Android App

Home Screen

We wanted the users to have a similar experience using the Android app as they have
using the website. For that reason we implemented in the mobile app the same categories
mentioned in the previous section. This, however, required a major code modification that
translated also in a perceptible user interface update.

In figure 3.12 the reader can see the old (left) and the new look (right) of the Home screen.

There are three main changes:

• The ActionBar

• The username bar

• The list of methods

The ActionBar In the ActionBar, which is the bar at the top where the logo and the
title of the app live, the Favorites button has been replaced with a Sync/Update button.
This is due to two reasons. First, the Favorites screen has been replaced by a section
in the Home screen. As can be seen in figure 3.12, right below the ActionBar there is
an IndicatorBar where the user can see the titles of the different sections. The one on
the left is the Favorites section, so leaving an additional button in the ActionBar seemed
redundant. Second, to reduce the number of Loading... dialogs, which can get annoying,
hence, making the app feel slower and reducing the user satisfaction, we tried to come
up with alternative ways of notifying the user that an action is being performed in the
background without getting in the way. Therefore we have added a Sync/Update button
in the screens which fetch remote information in the background like the Home and My
Account screens. When data is being fetched from the remote server, the Sync/Update
button turns into a Loading image, making the extra Loading... dialog unnecessary.

The username bar The username bar has also been removed to gain space for the Indi-
catorBar. This has also been justified by the fact that most likely only one user is going
to use the app on each device, thus making the username bar superfluous not only in the
Home screen but throughout the app. The only screen where the username bar appears is
in the My Account screen, which is accessible in two clicks in case the user wants to know
what username is logged in.

Chapter 3 Functionality 42

The list of methods The list of methods has also received a noticeable update. It is now
divided into sections through which the user can navigate by swiping left or right with the
finger. In order for the user to know which section is active an IndicatorBar is shown at
the top. Swiping through the different sections will trigger an animation much like that
found in the Android’s home screen or other apps like the Android Market, Google Docs
or Google Plus. Although the same categories exist as those found in the website (see
section 3.7.1), it is not quite that flexible and customizable due to the reduced screen size.
However, a few modifications have been made in order to allow the user to get a better
overview of the popularity of each didactic method. Their rating and number of comments
are now shown beside the method’s title, icon and star, giving relevant information that
could help the user navigate faster through the list.

Method’s Detailed View

Another part of the mobile app that has been substantially updated is the method’s De-
tailed View screen. In section 4.6 we will see that the code has been completely rewritten
from scratch to adapt to the new features. In this section, however, we will focused on the
functionality.

There are three main changes:

• The ActionBar

• The username bar

• New content sections

• Navigation

The ActionBar The ActionBar which the user can find at the top has been slightly
modified by adding a new button to let the user quickly jump to the comments section. To
make it easier for the user to differentiate between navigation buttons and method-related
buttons, a stronger division has been used. This should visually indicate the user that they
are different kind of buttons.

The username bar The username bar has been removed. The reader is referred to the
previous section about the changes in the Home screen where various reasons have been
exposed.

New content sections The type of information about the didactic methods has also
changed. Therefore new kinds of widgets are shown now in the information list. Examples
of this widgets are the new rating bar, the slider of the Heterogeneity section and the
comments, which have been explained in more detail in section 3.3.

Chapter 3 Functionality 43

Navigation Maybe the feature that is most likely to draw the users’ attention is the
subtle but user friendlier way to navigate through the different methods. In the previous
version of the app, after the user clicked on a method in the Home screen, for example, the
Detailed View opened and allowed the user to navigate left or right to the previous or next
method without needing to return to the Home screen. This was done however using an
older technique which required the gesture to finish before it was recognized. Only after a
fling gesture was performed, an animation was triggered that moved the desired method
into place. In the new version, however, the next method starts to appear already while
the user is dragging the finger on the screen. In section 4.6 we will explain more precisely
how this was achieved.

Chapter 3 Functionality 44

Figure 3.9: The new types of fields

Chapter 3 Functionality 45

Figure 3.10: Search enhancements

Figure 3.11: GUI Changes in the Homepage

Chapter 3 Functionality 46

Figure 3.12: Comparison of the old and the new Home screen

Chapter 4

Implementation

In this chapter we will get into the technical part of the system, that is, how we made
possible all the features mentioned in the previous chapter. As a reminder, here is an
overview of the new features:

• Ability to auto-update the Android app

• User profiles

• Ability to comment on didactic methods

• Ability to rate methods

• Enhancement of the methods’ information

• Enhancement of the Search screen

• Improvements in the user interface

• Code optimizations

4.1 Automatic Update

There are two ways of retrieving a new version of the app: automatically at startup or
manually through a preference in the Settings screen.

4.1.1 Automatic Update At Startup

The classes involved in the automatic update that is performed at startup are listed below:

• MethodsPager

• RefreshTask

• UpdateAppService

47

Chapter 4 Implementation 48

We will now go into details and explain which role has each of those classes in the process.

MethodsPager This class is an Activity where the Home screen is implemented. In the
onCreate() method, which is the first one that is called after the Activity has been created,
the background task RefreshTask is run. To learn more about this class, the reader is
referred to section 4.6.2.

RefreshTask The main purpose of this background task is to retrieve the newest data
available in the remote database, that is, all the didactic methods, the favorites, the ratings,
the current version of the system and whether an update is available. After all this data
has been retrieved, and if an update is actually available, this task tells the Home screen to
show a dialog that will let the user decide whether the new version should be downloaded
or not (see figure 3.1 left).

The listener of this dialog, that is, the class that handles what to do when each button is
clicked, is implemented inline and takes care of starting the service UpdateAppService or
of dismissing the dialog.

UpdateAppService This class is a Service. A service is a component that runs in the
background to perform long-running operations or to perform work for remote processes.
As oppossed to a background task, like RefreshTask for example, a Service keeps running
in the background after the Activity that started it has been ended. Therefore it is an ideal
implementation for downloading the latest version and running the installer. A notification
is shown in the notification bar (as shown in figure 3.1 middle). This way the user can
follow the process and has a notion of how long it will take to download the installer. After
the installer has been retrieved, it is executed and the Android operating system (Android
OS) takes care of the rest, replacing the older version with the new one (see figure 3.1
right).

4.1.2 Manual Update

The classes involved in the manual update are listed below:

• Preferences

• CheckForNewVersionTask

• UpdateAppService

We will now go into details and explain which role has each of those classes in the process.

Chapter 4 Implementation 49

Preferences This class is where the Settings screen is implemented. In this screen the user
can find a section to manually update the Android app (see figure 3.2). In the onCreate()
method of this class, the update preference is retrieved and a listener is attached to it.
When this preference is then clicked, the background task CheckForNewVersionTask is
called.

CheckForNewVersionTask This class is a background task that checks for a new version.
It sends the version of the app that is currently installed on the device to the server and
the server responds with a “1” or “0”, meaning that the app needs to be updated or
not. If a new version is actually available, the service UpdateAppService is started. The
version of the Android app is a constant stored in the strings.xml file and is therefore
a fixed value, whereas the latest version number is stored in the remote database and is
updated with every new version. The table ddk version has been created for this purpose.
It contains two columns (id and appversion) and one row (id = 1 and appversion =<
latest version of the android app >).

UpdateAppService See corresponding paragraph in section 4.1.1.

4.2 User profiles

To make the user profiles possible, the three components of the system needed to be
modified, that is, the remote MySQL database, the website and the Android app.

4.2.1 Remote MySQL database

The table ddk users has been enhanced with the following fields: fvversion, profilepicture,
name, lastname, birthday, gender, userstatus, userstatus other, usertype, usertype other,
university, university other, faculty, faculty other, department, experience and private.

fvversion is a field where a version number for the favorites is stored. If a user marks or
unmarks a didactic method as favorite, this version number is increased by one. This way,
if a user marks some methods as favorites using the website, the Android app knows that
the new list of favorites needs to be downloaded although the database of didactic methods
has not been modified.

The profile pictures are stored under the path /profilepics using this name format:
<username> <random string>.png. To make the name of the uploaded profile picture
not trivial and therefore not easy to guess, a random string is used as part of the name
of the picture. The database field profilepicture is where this name is stored to remember
which name was given to the picture when it was uploaded.

Chapter 4 Implementation 50

The fields name, lastname, birthday, gender, userstatus, userstatus other, usertype, user-
type other, university, university other, faculty, faculty other, department, experience are
where the personal and academic information of the user is stored. The fields ending in
“ other” represent the free text fields mentioned in section 3.2.

Finally, the profile fields that the user has marked as private are stored as a comma-
separated list under the database field private. This way the website knows what fields
should and should not be shown to other users in the profile viewer.

4.2.2 Website

As mentioned in section 3.2, the profile viewer (account/userinfo.php) and profile editor
(account/useredit.php) needed to be modified to adapt to the new database structure.
Apart from that, small layout changes have been made to make the greater number of
fields fit better inside the screen.

4.2.3 Android App

The classes involved in the user profile are listed below:

• MyAccount

• MyAccountAdapter

• UserInfo

• RefreshProfileTask

• DownloadProfilePictureTask

We will now go into details and explain which role has each of those classes in the process.

MyAccount This class is an Activity where the My Account screen is implemented. It
extends the class MethodsList, which is also the parent class for the Search screen and used
to be the parent class for the Home and Favorites screens (which have been completely
replaced by MethodsPager, see 4.6.2). This means that it has from the beginning all the
necessary functionality to communicate with a remote server, receive and parse remote
data, modify the local database and refresh the screen with the received information. The
only thing that needed to be changed was the Adapter that binds the received data with
the elements on the screen and the task that runs in the background and communicates
with the server.

Chapter 4 Implementation 51

MyAccountAdapter This class is an Adapter. Its purpose is to bind raw data with
elements on the screen. The data is the user information that is downloaded from the
server, whereas the elements on the screen is the ListView that allows the user to scroll
up and down to view that information.

UserInfo This class is utility class where all the user information downloaded from the
server is conveniently stored. Once instantiated, it can be then passed as argument to the
MyAccountAdapter which would then extract the necessary information and bind it to the
elemens on the screen.

RefreshProfileTask This class is the task that communicates with the remote server in
the background when the MyAccount Activity is started. It sends a request to the server
and parses its response. The received data is temporarily stored in a UserInfo object.
If the user is viewing his or her own profile, this data is stored permanently in the local
database, so that it can be accessed offline. If the user is viewing another user’s profile,
the data is passed to the MyAccount Activity without storing it locally. Then a refresh
of the screen is requested by calling the fillData() method of MyAccount and the data is
shown to the user. Calling the fillData() method triggers the call of another background
task whose purpose is to download the profile picture.

DownloadProfilePictureTask This class is a background task that fetches the profile pic-
ture from the remote server. In the previous step, RefreshProfileTask determined whether
a profile picture was available and what is the gender of the user. If a profile picture is
available, it is fetched from the server, stored in the SD card, passed to the adapter and
then displayed on the screen. If, on the other hand, no profile picture is available, a default
avatar is shown that varies with the gender of the user.

4.3 Comments

For the comments also the three components of the system needed to be modified, that is,
the remote MySQL database, the website and the Android app.

4.3.1 Remote MySQL database

Two tables have been created to store all the necessary information about the comments:
ddk comments and ddk commentvotes.

Chapter 4 Implementation 52

ddk comments This table contains the necessary information about the comments. It is
composed of the following fields: id, method id, timestamp, username, text, in response to,
thumbsup, thumbsdown, thumbstotal and rating. id is a unique number that identifies
each comment. method id represents the didactic method to which this comment belongs.
timestamp is the date and time at which this comment was made. username is the user who
made the comment. text is the actual text of the comment. If in response to is not empty,
this means that this comment is a reply to another one, whose id is stored in this field.
thumbsup and thumbsdown are the number of up and down votes that this comment has
received. thumbstotal is (thumbsup − thumbsdown). rating is the rating that the author
of this comment has given to the current didactic method, which is interesting since so can
the reader see right away how satisfied is the user with the current didactic method.

ddk commentvotes This table has been created to track the votes each user makes to
each comment. It is composed of the following fields: username, comentid and value.
Each combination (username, comentid, value) means that the user username gave the
comment with id = comentid a vote of value. value can be either −1, 0 or +1, meaning
that the user gave the comment a negative, neutral or positive vote, respectively.

4.3.2 Website

To make the comment functionality as modular as possible and to make the comments
easy to embed inside any page, it has been implemented in the file comments.php. This
file can be included as part of any page using the PHP include() construct, but can also
be queried using Ajax requests from Javascript.

The file comments.php is included at the end of the file view.php which is the page that
shows all the information about one single didactic method. One can then see the comment
form, the first chunk of comments and a button to load more comments right after the
method’s didactic information.

Below we will get into the details of all the comments-related actions. All this actions
work regardless of whether Javascript is enabled or not in the browser. The only difference
is that the page gets reloaded each time an action is performed if Javascript is disabled.
Otherwise, Ajax is used and only the comments are reloaded after each action, leaving the
rest of the web page intact. Since by default Javascript is always enable in most browsers,
we will discuss this case below.

Posting a comment After inserting a comment in the text area and clicking on the
“Post” button, an Ajax request is sent to the file comments.php with the id of the didactic
method and the posted text attached. This information is then inserted into the table

Chapter 4 Implementation 53

ddk comments (see section 4.3.1) and the first chunk of the new list of comments is sent
back to the browser, where the old list is just replaced by the new one.

Loading more comments For the sake of performance and fast loading times, the com-
ments are loaded in chunks of 10 comments with their replies. This number is a constant
that has been defined in globals.inc.php and can be changed at any time. If the didactic
method has more than 10 comments, only a portion is shown but a “Load more com-
ments” button is made available. Clicking on this button will send an Ajax request to
comments.php with the variables commentOffset and commentCount attached to it which
define the portion of comments that needs to be fetched from the database. After fetch-
ing that chunk of comments from the database, it is sent back to the browser where it is
appended to the current list of comments.

Voting a comment Hovering with the mouse over each comment will display three but-
tons to vote a comment up or down and to reply to it. Clicking on the “Vote Up” or “Vote
Down” buttons will send an Ajax request to comments.php with the type of vote (up or
down) and the id of the comment attached to it. The actions performed on the server side
are a little more complex because we have to check if any of the rules mentioned in section
3.3 have been broken.

First we have to check if the user that posted the comment is the same user that is voting
the comment up or down. If that is the case no changes are made to the database and a
message is sent back to the browser and shown to the user.

Second we have to check if the user has already voted the comment either up or down.
If the user has already voted the comment down, for example, and he or she is trying to
vote this comment down again, nothing is changed in the database and a message is sent
back to the browser and shown to the user informing him or her of that. If, on the other
hand, the user had voted the comment down but now he or she is voting it up, a neutral
vote is stored in the ddk commentvotes table and the thumbsup and thumbstotal fields of
the ddk comments table are updated accordingly. A message is still shown to the user
informing him or her that that positive vote has canceled the previous negative one, so, in
order to actually give a positive vote to the comment, he or she should vote the comment
up again. If the user votes the comment up again, then a positive vote is stored in the
ddk commentvotes table and the thumbsup and thumbstotal fields of the ddk comments
table are updated accordingly. The same applies in the other direction, that is, if the user
had voted the comment up at the beginning.

If none of the two cases just mentioned applies, that is, the user is not voting his or her
own comment and it is the first time that he or she votes the comment in question, the
vote is recorded normally in the ddk commentvotes table and the thumbsup/thumbsdown
and thumbstotal fields of the ddk comments table are updated accordingly.

Chapter 4 Implementation 54

Reply to comments As mentioned above, hovering with the mouse over each comment
will display the reply button next to the buttons to vote the comment. Clicking on that
button, will trigger an animation that will show the reply box below the comment the
user wants to reply. After writing some text and submitting it clicking on the “Reply”
button below the text input form, an Ajax request is sent to comments.php with the id of
the comment that the user is replying and the actual text of the comment attached to it.
This information is then inserted in the table ddk comments storing the id of the comment
being replied in the field in response to. The new list of comments is then fetched from
the database and sent back to the browser, where it replaces the old one.

4.3.3 Android App

The Android app has also been heavily modified to support comments. The optimizations
that have been made are discussed throughout this chapter. In this section we are just
going to focus on the implementation of the functionality discussed in section 3.3.

The classes involved in the implementation of the comments are listed below:

• Method

• Container

• FetchCommentsTask

• MethodAdapter

• CommentForm

• PostCommentTask

• QuickAction

• VoteCommentTask

We will now go into details and explain which role has each of those classes in the process.

Method This class is the Activity where the detailed view of a single didactic method
is implemented. It is analogous to the file view.php in the website and has therefore
comments-related functionality. This class has been rewritten from scratch and has re-
placed the old ViewItem class to make it easier to scale and to increase performance and
speed. In the section about the changes to the user interface (4.6) we will discuss the
changes in this class a little further.

This class uses a SmoothViewSwitcher [17] which has the same functionality as the recently
published Android class ViewPager, that is, this allows the user to swipe left and right
with the finger to scroll through a set of pages. The idea is to replace SmoothViewSwitcher

Chapter 4 Implementation 55

with ViewPager in the future to have a consistent implementation of similar functionality
throughout the app. The SmoothViewSwitcher contains three child Views representing
each one of them a single didactic method: The main or center View, which is shown on
the screen; the previous View, which is hidden on the left side; and the next View, which
is hidden on the right side. To handle all operations related to a single one of this Views
the class Container has been created.

Container This class is a utility class which represents each one of the children of the
SmoothViewSwitcher. It contains references to all elements on the screen and has capabil-
ities to fetch the necessary information from the local or remote database. It has therefore
the necessary tools to load the comments from the remote server and show them on the
screen. For that, the class FetchCommentsTask is used.

FetchCommentsTask This class is a background task whose purpose is to fetch a certain
chunk of comments from the remote server and pass it to the Container. To do that,
it expects from the Container information about which chunk needs to be fetched and
whether we are reloading all the comments or appending some comments at the end. With
that information, the appropriate request is sent to the server and the response is passed as
a ParsedCommentsData object to the Container. The Container then passes that object
to the MethodAdapter and requests a screen refresh.

MethodAdapter This class is an adapter and, as mentioned in section 4.2.3, it binds raw
data with elements on the screen. This adapter expects two types of data: the information
about a didactic method and the corresponding comments. It is smart enough to combine
the two types of data into the same screen.

The layout of the Method screen is determined by this class and looks as follows (see figure
3.6): At the top, there are the method’s title, icon and favorite star. Right below that
begins all the information about the didactic method, with the ratings and the gallery of
pictures. After that, the comments section begins, which starts with a text input to post a
comment and continues with the first chunk of comments. At the end, there is a list item
that displays information about the current status of the comments’ loading process.

Clicking on the text input starts the form to post a new comment, which has been imple-
mented in the class CommentForm. Clicking on the comments, on the other hand, displays
a series of “quick actions” that have been implemented in the class QuickActions.

CommentForm This class is a custom View, specifically a LinearLayout, that appears as
a floating form on top of the Method screen to allow the user to post a new comment or a
reply while still being able to scroll through the comments (see figure 3.6 right). Clicking
on the “Post” button will start the background task PostCommentTask.

Chapter 4 Implementation 56

PostCommentTask This class is a background task which is executed after the the user
has entered a comment in the CommentForm and clicked on the “Post” button. A request
is then sent to the server in the background with the method id, the actual text of the
comment and, in case of a reply, the id of the comment that is being replied attached
to it. The server then responds with a “SUCCESS” or “ERROR” message. In case of
success, the list of comments is refreshed to include the newly added one. In case of error,
a message is shown to the user.

QuickAction Clicking on the comments on the Method screen will trigger the quick ac-
tions. Quick actions are a series of actions that can be performed for the selected comment
and are conveniently shown in a little pop-up widget (see figure 3.6 center). The quick
actions has been used following best practices for UI features and behavior patterns [5].
For this purpose, an implementation has been found in the literature [15] that has been
modified to adapt to the system requirements. The quick actions implemented for the
comments are: Vote up, Vote down, Reply and Profile. Clicking on Reply will display the
CommentForm to allow the user to post a reply to the current comment (see above for
more details). Clicking on Profile will open the My Account screen with the username
attached to the Intent passed to the Activity MyAccount. This will make the Activity load
the information for the passed user and note the information of the locally signed in user
(see section 3.2 for more details). Finally, clicking on Vote up or Vote down will start the
background task VoteCommentTask.

VoteCommentTask This is a background task which sends the vote a user has given to
a certain comment to the server. It expects the comment id and the type of vote (positive
or negative) and attaches this information to the request that is sent. The server then
takes into consideration all the conditions discussed in section 4.3.2 and replies with a
“SUCCESS” or “ERROR” message. In case of success, the list of comments is refreshed to
reflect the change. If an info message is attached to the “SUCCESS” message, for example,
in the case that the user voted the comment up after having voted it down previously, a
message is shown to the user. In case of error, the list of comments does not get refreshed
and only an error message is shown to the user.

4.4 Ratings

Once again, the three components of the system needed to be modified to integrate this
feature. Let us take a look at what was changed exactly to achieve the required functionality
(see section 3.4).

Chapter 4 Implementation 57

4.4.1 Remote MySQL database

All the information about the ratings are stored in one table: ddk ratings. However, other
tables, like ddk methods, for example, have been enhanced with one additional userrating
field, which gets updated everytime an entry gets added or deleted from the ddk ratings
table to avoid making complex queries each time information about one single method
needs to be retrieved.

ddk ratings This table is composed of the following fields: method id, username, rating
and timestamp. method id is the id of the didactic method that has been rated, username
is the name of the user that has rated the method, rating is the rating that the user has
given to the didactic method, and timestamp is the date and time at which the rating took
place, which can come in handy in the future.

4.4.2 Website

There are two types of rating bars in the website.

The first type is merely informative and shows either the average rating of a method or
the rating that the author of a comment has given to the method he or she is commenting
about. This type of rating bar is fixed and does not react to user interaction.

The second type represents the rating that the user has given to a didactic method. If
the user has not rated the comment yet, all stars of the rating bar appear grey. If, for
example, the user has given a rating of three stars to the didactic method, three stars
will appear highlighted in yellow and the rest will remain grey. This kind of rating bar,
on the other hand, does react to user interaction. For that, different Javascript func-
tions have been attached to different events of the rating bar. When the user hovers
over this type of rating bar, the onmouseover event fires and the Javascript function Mo-
biDics.ratings.highlightStars() is executed. This will get the index of the star the mouse
is currently over and highlight all stars up to that one. When the user moves the mouse
away from the rating bar, the onmouseout event fires and the Javascript function Mo-
biDics.ratings.resetStars() is executed. This will reset the stars to their previous state.
When the user clicks on a star, the onclick event fires and the Javascript function Mo-
biDics.ratings.rate() is executed. This will send an Ajax request to the server in the
background with the method id, username and rating attached to it. The server will then
respond with a message letting the browser know if the request was processed successfully
or not. In case of success, the rating bar is updated with the new rating, setting it as the
default state. In case of error, an error message is shown to the user.

Chapter 4 Implementation 58

4.4.3 Android App

The Android app has also been modified to support the two types of rating bars.

The classes involved in the implementation of the desired functionality (see section 3.4)
are listed below:

• MethodAdapter

• Method

• Container

• RateMethodTask

• SendOfflineTasks

We will now go into details and explain which role has each of those classes in the process.

MethodAdapter This class is the adapter that binds raw data about a didactic method
to the elements on the screen. The average rating and the rating that the current user has
given to the didactic method are extracted from the data set. When the rating bar appears
on the screen, the number of highlighted stars is change depending on the extracted rating
data. It is here where an OnRatingBarChangeListener is attached to the rating bar, in
our case, the class Method

Method As has been mentioned before, this class represents the View Method screen of
the Android app. To get a more detailed explanation of what this class does, refer to
section 4.6. In this scenario, however, the only thing this class does regarding the ratings
is implementing an OnRatingBarChangeListener. This allows this class to decide what
to do when the value of the rating bar is changed by the user. For that, the method
onRatingChanged() is overridden. When the user slides his finger across the rating bar
to rate the current didactic method, onRatingChanged() fires. This retrieves the current
Container (see next paragraph) and calls the method rate of that class.

Container As mentioned in section 4.3.3, the Method class allows the user to fling left
and right to browser through the list of didactic methods. The Container class represents
each of this pages and therefore is here where the functions to set the rating of the currently
displayed method are implemented. The function rate() gets called from the Method class,
as mentioned in the previous paragraph. This runs the task RateMethodTask that takes
care of communicating with the server in the background.

Chapter 4 Implementation 59

RateMethodTask This class is a background task which expects the current rating passed
as an argument. This, along with the method id and the username, are attached to a HTTP
request that gets sent to the remote server. The server then records that information in the
remote database and responds back with a “SUCCESS” or “ERROR” message. In case of
success, the method setRating() of the Container class is called. This method notifies the
MethodAdapter of this change and requests a screen refresh. In case of error, a message is
shown to the user.

If there is no network connection when the user rates a didactic method, however, this
rating is saved as an offline task in the device’s local database. When an update of the
current database is requested, either automatically at startup or manually by the user, the
background task SendOfflineTasks is run.

SendOfflineTasks This class is a background task that sends any available offline infor-
mation to the remote server, including favorites and ratings. For that, the local database
table offlinetasks is checked for possible entries. If the table is not empty, the information
contained in it is attached to an HTTP request and sent to the server before the most
up-to-date remote database is fetched.

4.5 Method’s Information Enhancement

The enhancements that were made to the methods’ information did not require major
changes in the structure of the database, but had more to do with how that information
was stored. Let us take a look at the different types of information input elements that
were discussed in section 3.5 and explain what hides behind the scenes that makes the
desired functionality possible.

Let us recall the new types of information inputs:

• Multiple choice

• Dependent multiple choice

• Extendible muliple choice

• Slider

Multiple choice The multiple choice fields are just a series of identification numbers
(id’s). Since we want to support multiple languages, this id’s are assigned to a correspond-
ing translation or label in the language files. What translation is used for each one of
those id’s depends on the language the user has chosen in his profile. When the user marks
several check boxes and hits the submit button in the Edit Method page (edit.php), the
id’s are combined as a colon-separated list (< id1 >:< id2 >: ... :< idn >) and stored in

Chapter 4 Implementation 60

the corresponding field of the database’s table. When retrieved from the database, this list
is converted to an array of id’s and, for each id, the corresponding translation is fetched
from the language file and displayed on the screen.

Dependend multiple choice This kind of multiple choice fields works similarly to the
previous one. The only thing that changes is that a Javascript function is attached to the
onclick event of the check boxes. The function toggleSubphase() fires each time a checkbox
has been clicked in the Phase category and displays or hides the corresponding section
in the Subphase category. The storing and retrieving of the check boxes that have been
checked in either category has been explained in the previous paragraph.

Extensible multiple choice This kind of multiple choice did require a change in the
structure of the database. Although the checked items are also stored as a colon-separated
list of id’s in the database, this id’s are no longer retrieved from the language files, but
from an additional table that has been created in the database for that purpose, namely
ddk materials. This table contains three fields: id (a unique number that identifies each
checkbox), name de (which represents the german translation of the corresponding id) and
name en (which represents the english translation of the corresponding id). Each time a
new material gets added using the text input available for that purpose, an Ajax request
is sent in the background to the file actions.inc.php and a new entry gets added to the
ddk materials table. In case of success, that new entry gets appended to the list of check
boxes. In case of error, a message is shown to the user. Clicking on the red cross next to
the check boxes, however, sends an Ajax request in the background that will delete the
corresponding entry from the ddk materials table and, hence, from the list of displayed
check boxes. Marking those check boxes and submitting the form would store the id’s in
the same manner explained in the previous paragraphs.

Slider The slider is a new kind of input that has been implemented to support values
within a scale. This is the case of the Heterogeneity field. The heterogeneity of a group is
a characteristic that has been chosen to be represented as a value between 0 (completely
homogeneous group) and 10 (completely heterogeneous group). Therefore a slider proved
to be an ideal way of representing that characteristic. Although HTML 5 supports this
kind of input out of the box [20], we decided to implement it using HTML 4 features since
HTML 5 is not fully supported by all browsers yet. For that, we used two custom div
elements, one for the track of the slider and one for the handle, that mimic the way it
would look using HTML 5. Then the script.aculo.us Javascript library has been used to
handle the drag-and-drop functionality. When the position of the handle changes within
the track, the value is stored in a hidden input which is the one that is actually sent when
the HTML form is submitted. When the form is loaded, a Javascript function is executed
that fetches the value stored in the hidden input and updates the position of the handle
accordingly.

Chapter 4 Implementation 61

This fields have been implemented to edit the information of the didactic methods. There-
fore they have not been implemented in the Android app, since it is more of a viewer than
an editor. However, the fields used in the Search screen of the Android app have been
affected by this changes. In the next section we will look into this changes in detail.

4.6 User Interface Enhancements

In section 3.7 we talked about the enhancements that have been made to the user interface.
We discussed the differences between the old and new versions of the system and we gave
a quick overview of the functionality of the new features. In this section we will get into
the inner workings and explain how we managed to implement the required functionality.

4.6.1 Website

The Frecency Algorithm

For the sorting of the didactic methods we have chosen a variation of the Frecency algo-
rithm [16] used by the Mozilla Corporation in the address bar of the Firefox web browser.
This algorithm has been chosen to be good compromise between speed and accuracy.

What this algorithm basically does is fetch the last 10 visits to an item, in our case,
didactic methods, and calculate a weighted sum for each of them based on the type of
visit. Different bonuses and weights are given to each method depending on the type of
visit and how recent the visit was.

Below is the algorithm as shown in the literature:

1 For the 10 most r e c ent v i s i t s (where 10 i s determined by p l a c e s . f r e c ency .
numVisits) :

3 Determine percentage bonus for type o f v i s i t (i e : the ” t r a n s i t i o n type ”) :
0 (embedVisitBonus)

5 120 (l inkVi s i tBonus)
200 (typedVis itBonus)

7 140 (bookmarkVisitBonus)
0 (downloadVisitBonus)

9 0 (permRedirectVis itBonus)
0 (tempRedirectVis itBonus)

11 0 (de fau l tV i s i tBonus)

13 Determine weight , based on how recent the v i s i t was :
100 (4 days bucket s i z e)

15 70 (14 days bucket s i z e)
50 (31 days bucket s i z e)

17 30 (90 days bucket s i z e)

Chapter 4 Implementation 62

10 (defaultBucketWeight)
19

Points for each sampled v i s i t = (bonus / 100 . 0) ∗ weight
21

Fina l f r e c ency s co r e for v i s i t e d URI = c e i l i n g (t o t a l v i s i t count ∗ sum of
po in t s for sampled v i s i t s / number o f sampled v i s i t s)

In our case, the bonuses given to each method depends on various factors:

• If the user views a didactic method that he or she is the author of, a bonus of 200 is
given.

• If the user views a didactic method that has been marked as favorite, a bonus of 140
is given.

• If the user views a didactic method by clicking on a link in the home screen, a bonus
of 120 is given.

• If the user views a didactic method by clicking on the “previous” and “next” links
of the detailed view of a method, a bonus of 60 is given.

• If the user views a didactic method after having just created/modified it, a bonus of
20 is given.

• Otherwise, a bonus of 0 is given.

The weights depending on how recent the visit was are the same ones used in the original
algorithm.

Home Page

As already mentioned, the new Home page has a category section on the top left corner.
Clicking on each category link will show different views of the database sorted by relevant
criteria depending on the category that is currently active.

This feature works as follows: When a user signs in, important views are created in the
database. views are just ways to virtually save complex queries in the database as if they
were individual tables. However, views take very little space to store, since they do not
store actual data. They are just ways to look at an already existing set of tables. The
created views are customized for each user and they combine information from different
tables into one. To be more specific, relevant information needs to be fetched from tables
such as ddk frecency (for the sorting algorithm), ddk ratings (for the ratings of the current
user) and ddk views (for the list of recently accessed didactic methods). This information
is then attached to the methods’ table, ddk methods. This technique serves to turn very
complex SQL queries into simple ones.

Chapter 4 Implementation 63

The views created for each user correspond to the SQL queries below:

CREATEOR REPLACE VIEW <username> methods AS
2 SELECT m.∗ , f . f r e c ency

FROM <METHODS TABLE> AS m
4 LEFT JOIN <FRECENCY TABLE> AS f

ON (m. id=f . method id AND f . username=’<username> ’)
6 WHERE (m. scope=’ 0 ’ OR m. scope=’ 2 ’ OR m. author=’<username> ’)

ORDERBY f . f r e c ency desc , m. u s e r r a t i n g desc

Listing 4.1: Generated view with the frecency value attached

The view from listing 4.1 combines the methods’ table (ddk methods) and the frecency table
(ddk frecency) into one view (<username> methods). It basically binds each method with
its frecency ranking for easy sorting.

1 CREATEOR REPLACE VIEW <username> myrating AS
SELECT m.∗ , r . r a t i n g as myrating

3 FROM <username> methods AS m
LEFT JOIN <RATINGS TABLE></RATINGS TABLE> as r

5 ON (m. id=r . method id AND r . username=’<username> ’)

Listing 4.2: Generated view with the myrating value attached

The view from listing 4.2, combines the view from previous step (<username> methods)
and the ratings table (ddk ratings) into another view (<username> myrating). It basically
binds each method with its frecency ranking and the rating of just the current user.

As can be seen from those listings, two fairly complex queries have been cleanly stored
under a virtual table, that can be queried just like any other one.

When the user then clicks on the link of a category, the home page gets reloaded with
the HTTP GET variable category attached to it and the internal variables about what
information is fetched from this views are adjusted. Let us now take a closer look at each
category.

“Home” category Clicking on this link will redirect the user to the url index.php?

category=home. This variable is then retrieved internally and the PHP function setCate-
gory() is called with the desired category passed as argument. This would then set session
variables that control what SQL query is actually sent to the database. The session vari-
ables remain untouched with every page refresh and allows to save the state of the last
SQL query.

In the case of the home category, the session variables are such that the first 20 rows
from columns id and title are fetched from the view <username> myrating and sorted in
descending order by column frecency first and userrating after.

index.php?category=home
index.php?category=home

Chapter 4 Implementation 64

“Favorites” category Clicking on this link will redirect the user to the url index.php?
category=favorites. The session variables set would filter only those methods which has
been marked as favorite, fetch the first 20 rows from columns id and title from the view
<username> myrating and sort the result in descending order by column frecency first
and userrating after.

“My top rated” category Clicking on this link will redirect the user to the url index.
php?category=mytoprated. The session variables set would fetch the first 20 rows from
columns id, title and myratings from the view <username> myrating and sort the result
in descending order by column myrating.

“Top rated” category Clicking on this link will redirect the user to the url index.

php?category=toprated. The session variables set would fetch the first 20 rows from
columns id, title and userratings from the view <username> myrating and sort the result
in descending order by column userrating first and frecency after.

“New / Updated” category Clicking on this link will redirect the user to the url index.
php?category=new. The session variables set would fetch the first 20 rows from columns
id, title and date modified from the view <username> myrating and sort the result in
descending order by column date modified first and columns frecency and userrating after.

As the reader can see, we have combined information spread throughout the database in
manageable views that can be easily queried using simple SQL statements.

4.6.2 Android App

Home Screen

To implement in the mobile app the same categories as in the website (see above) the Home
screen had to be redesigned and rewritten. For that we made use of the ViewPager [7]
class, which was released as part of the Compatibility Package revision 3 for Android.

The classes that were created are listed below:

• MethodsPager

• ViewPager

• TitlePageIndicator

• PagerAdapter

• MethodsFragment

index.php?category=favorites
index.php?category=favorites
index.php?category=mytoprated
index.php?category=mytoprated
index.php?category=toprated
index.php?category=toprated
index.php?category=new
index.php?category=new

Chapter 4 Implementation 65

MethodsPager The MethodsPager is the FragmentActivity [6] where the new Home
screen is implemented. It has completely replaced the old Home and Favorites classes.
However, the parent class is still being used for other screens without paging functionality
like the Search and the My Account screen, so it has been maintained.

The layout is composed of the ActionBar, the TitlePageIndicator and the ViewPager

ViewPager The ViewPager is a widget, similar in behaviour to the ListView [4], which
instead of showing items in a list with the help of a ListAdapter, it shows pages in a
horizontal view with the help of a FragmentPagerAdapter [3]. It contains already all the
necessary functionality to allow the user to swipe left and right to navigate through the
pages, so it simplifies its maintenance.

TitlePageIndicator The TitlePageIndicator is the bar where the titles of the different
pages live. It is binded with the ViewPager, meaning that every gesture that affects the
movement of a page triggers a similar animation in the title bar. This class has been found
in the literature (see [21]) and has been modified to adapt to the system requirements.

PagerAdapter The class is an adapter, more precisely a FragmentPagerAdapter, which
helps bind the different pages (named Fragments) with the ViewPager. The Fragments
are then implemented separately in the class MethodsFragment ;

MethodsFragment Fragments [6] are special components with their own user interface
and lifecycle. They can be thought of as a type of Activity, though they cannot run
independently but must be hosted within an actual Activity. The class MethodsFragment
is where each individual page of the ViewPager is implemented. This class has adopted
many snippets of code from the old Home screen, since the behaviour of a single Fragment
is similar to that of the previous version of the Home Activity.

Conceptually speaking, each Fragment is just a different view of the underlying database,
therefore, the only thing that changes from one Fragment to another is the Cursor object
that the getCursor() method returns, that is, the response of the SQLite query that is
sent to the local database. When a new Fragment is loaded as the user navigates through
the ViewPager the fillData() method is called. This function calls the just mentioned
getCursor() method which would send a query to the local database. The database would
then respond with a Cursor object sorted by a certain criteria which would depend on the
position of the page within the ViewPager.

Chapter 4 Implementation 66

Method’s Detailed View

The method’s Detailed View is the screen that has undergone the most changes under the
hood. This class has been rewritten from scratch since we wanted to add new features, like
ratings and comments, which were not compatible with the user the screen was designed.

Method This class is where the Detailed View screen is actually implemented. Its older
version (previously named ViewItem) took care of all the interactions between the user,
the user interface and the local database. However, this design did not scale well for the
complexity of the features we were about to introduce. In the new design of this class many
secondary utiliy classes have been implemented which are then attached to the Method class
and take care of specific tasks.

So now, all this class actually does, is tracking the user actions and calling methods from
the utility classes.

The used utility classes are listed below:

• MethodAdapter

• DbAdapter

• Container

• Item

• SmoothViewSwitcher

• ContentMenu

• CommentForm

MethodAdapter This class is an adapter that makes use of the Container and Item class
mentioned below to display the data about a didactic method on the screen. This takes
care of the layout and all the types of list items available in the Detailed View screen.

DbAdapter This class takes care of all the operations regarding the local database and
the external storage (usually an SD card). It already existed in the previous version but
has been enhanced to adapt to the new database structure.

Container This class has been also rewritten and takes care of all the operations regarding
a single child container or view of the SmooViewSwitcher.

Chapter 4 Implementation 67

Item This class takes care of retrieving all raw data about a didactic method from the
database.

SmoothViewSwitcher This class is a custom view that makes possible swiping through
the methods in the Detailed View. This has the same functionality as the ViewPager, but
it has been used since the ViewPager class was released by the Android Developers at a
later point in time.

ContentMenu This class is a custom layout widget that handles all the operations re-
garding the content menu that appears when clicking the button on the far right of the
ActionBar.

CommentForm This class is a custom layout widget that handles posting and replying
to comments.

Chapter 5

Possible Improvements

The initial system has been improved in many ways, however, this improvements have
opened new doors and, with them, new ways to make the system even better. In this
chapter we will go through a list of possible ways in which the current project can be
enhanced in the future.

5.1 Recommendation system

Although now we have the possibility to gather enough information to implement a re-
comendation system, one has not been implemented yet. A possible way to embed this
feature in the current design of the website and the Android app would be to add it as a
new category, in addition to the favorites, top rated and so on. This could be an interesting
direction to follow.

5.2 Sorting algorithms for the comments

At the moment, the user can sort the comments that users have made about a method by
the votes they have received or by their date (ascending or descending). However, we have
seen in the literature [13]that there are other criteria that we can have into consideration
like, for example, the user reputation. This ranking can be embedded in the new improved
user profiles to make the sorting of the comments move more relevant comments to the
top.

5.3 Popularity algorithm

The user can already sort the list of methods by different criteria. At the moment, the
home category sorts the methods depending on the frequency and recency of their last

68

Chapter 5 Possible Improvements 69

visits, which move relevant didactic methods to the top. However, it would be interesting
to test different other ways to sort the methods. A suggestion would be taking the number
of comments into consideration, which is also a sign that a method is popular.

Chapter 6

Conclusion

MobiDics has been initially built to fill a gap between lecturers and didactic methods.
This gap existed due to the lack of a system that allowed lecturers to easily manage and
share didactic content. This is the problem that we were trying to solve and we have done
it in two steps. In the first step we built an information system from the ground up that
was powerful and at the same time easy to use. This system allowed the lecturers to find
didactic methods. In the second step we tweaked that system and enhanced it with new
features. This improvement was done with one important goal in mind: Bring lecturers
together and let the methods find the way to the user.

The initial goal of bringing lecturers and didactic methods closer together has led us to
build the necessary tools around which a community can grow where every individual can
learn not only from the content, but also from one another. This is an important spot that
gives MobiDics the opportunity to learn from its users and allows them to connect with
each other. We are now in a position where we can analyze the gathered data, we can
begin to understand the relationship between the lecturers and the didactic method and
we can learn from the preferences of the community.

Looking at what we have achieved and the potential this new system has, we can safely
say that this is only the beginning of something great. We have a tool that will never be
completed, a tool that can only get better with each iteration, and in the end, a tool that
will help increase the quality of the academic education.

70

List of Figures

2.1 Ratings in the Android Market Website . 13
2.2 Ratings in the Android Market App . 14
2.3 Ratings in the YouTube Website . 15
2.4 5-Star Ratings in YouTube . 16
2.5 Ratings in the YouTube App . 17
2.6 Comments in the YouTube Website . 22
2.7 Comments in the Facebook App . 25

3.1 Automatic Update . 28
3.2 Update section in the Settings screen . 29
3.3 Enhancement of the user profile . 30
3.4 My Account screen . 31
3.5 Comments on the Website . 32
3.6 Comments in the Android App . 34
3.7 Ratings (website) . 36
3.8 Ratings (Android) . 37
3.9 The new types of fields . 44
3.10 Search enhancements . 45
3.11 GUI Changes in the Homepage . 45
3.12 Comparison of the old and the new Home screen 46

71

Bibliography

[1] Allen, Christopher ; Appelcline, Shannon: Collective Choice: Rating Sys-
tems. http://www.lifewithalacrity.com/2005/12/collective_choi.html, De-
cember 2005

[2] Amazon.com, Inc.: Amazon. http://www.amazon.com/,

[3] Android Developers: FragmentPagerSupport.java. http://developer.android.
com/resources/samples/Support4Demos/src/com/example/android/supportv4/

app/FragmentPagerSupport.html, 2011

[4] Android Developers: ListView. http://developer.android.com/reference/

android/widget/ListView.html, September 2011

[5] Bray, Tim: Twitter for Android: A closer look at Android’s evolv-
ing UI patterns. http://android-developers.blogspot.com/2010/05/

twitter-for-android-closer-look-at.html, May 2010

[6] Bray, Tim: The Android 3.0 Fragments API. http://android-developers.

blogspot.com/2011/02/android-30-fragments-api.html, February 2011

[7] Bray, Tim: Horizontal View Swiping with ViewPager. https://developer.

mozilla.org/en/The_Places_frecency_algorithm, August 2011

[8] eBay Inc.: eBay. http://www.ebay.com/,

[9] Facebook: Facebook. http://www.facebook.com/,

[10] Garcia Quintana, Yeray: Supporting Learning on Mobile Devices, Institute of
Communication Networks (LKN), Munich University of Technology (TUM), Bachelor
Thesis, March 2011

[11] Google Inc.: Android Market. https://market.android.com/,

[12] Google Inc.: Recommend on Search, Share on Google+. http://www.google.com/
+1/button/, 2011

[13] Hsu, Chiao-Fang ; Khabiri, Elham ; Caverlee, James: Ranking Comments on
the Social Web. In: Department of Computer Science and Engineering - Texas AM
University

72

http://www.lifewithalacrity.com/2005/12/collective_choi.html
http://www.amazon.com/
http://developer.android.com/resources/samples/Support4Demos/src/com/example/android/supportv4/app/FragmentPagerSupport.html
http://developer.android.com/resources/samples/Support4Demos/src/com/example/android/supportv4/app/FragmentPagerSupport.html
http://developer.android.com/resources/samples/Support4Demos/src/com/example/android/supportv4/app/FragmentPagerSupport.html
http://developer.android.com/reference/android/widget/ListView.html
http://developer.android.com/reference/android/widget/ListView.html
http://android-developers.blogspot.com/2010/05/twitter-for-android-closer-look-at.html
http://android-developers.blogspot.com/2010/05/twitter-for-android-closer-look-at.html
http://android-developers.blogspot.com/2011/02/android-30-fragments-api.html
http://android-developers.blogspot.com/2011/02/android-30-fragments-api.html
https://developer.mozilla.org/en/The_Places_frecency_algorithm
https://developer.mozilla.org/en/The_Places_frecency_algorithm
http://www.ebay.com/
http://www.facebook.com/
https://market.android.com/
http://www.google.com/+1/button/
http://www.google.com/+1/button/

BIBLIOGRAPHY 73

[14] Jpmaster77: PHP Login System with Admin Features. http://www.evolt.org/

node/60384, August 2004

[15] Lorensius W. L. T: How to Create QuickAction Dialog in Android. http://www.

londatiga.net/it/how-to-create-quickaction-dialog-in-android/, July 2011

[16] Mozilla Developer Network: The Places frecency algorithm. https://

developer.mozilla.org/en/The_Places_frecency_algorithm, June 2008

[17] Murmann, Lukas: SmoothViewSwitcher. https://bitbucket.org/lum/andlib,
2011

[18] Nielsen, Jakob ; Pernice, Kara: Eyetracking Web Usability. New Riders Press,
2009

[19] Rajaraman, Shiva: Five Stars Dominate Ratings. http://youtube-global.

blogspot.com/2009/09/five-stars-dominate-ratings.html, September 2009

[20] WebHole: HTML 5 Slider Bar Tutorial. http://webhole.net/2010/04/24/

html-5-slider-input-tutorial/, 2010

[21] Wharton, Jake: ViewPagerIndicator. https://github.com/JakeWharton/

Android-ViewPagerIndicator, 2011

[22] White, Glenn: Rate This! The emotional side of rat-
ing systems. http://socialmediatoday.com/glennwhite/284357/

rate-emotional-side-rating-systems, April 2011

[23] YouTube, LLC: YouTube. http://www.youtube.com/,

http://www.evolt.org/node/60384
http://www.evolt.org/node/60384
http://www.londatiga.net/it/how-to-create-quickaction-dialog-in-android/
http://www.londatiga.net/it/how-to-create-quickaction-dialog-in-android/
https://developer.mozilla.org/en/The_Places_frecency_algorithm
https://developer.mozilla.org/en/The_Places_frecency_algorithm
https://bitbucket.org/lum/andlib
http://youtube-global.blogspot.com/2009/09/five-stars-dominate-ratings.html
http://youtube-global.blogspot.com/2009/09/five-stars-dominate-ratings.html
http://webhole.net/2010/04/24/html-5-slider-input-tutorial/
http://webhole.net/2010/04/24/html-5-slider-input-tutorial/
https://github.com/JakeWharton/Android-ViewPagerIndicator
https://github.com/JakeWharton/Android-ViewPagerIndicator
http://socialmediatoday.com/glennwhite/284357/rate-emotional-side-rating-systems
http://socialmediatoday.com/glennwhite/284357/rate-emotional-side-rating-systems
http://www.youtube.com/

	Contents
	Introduction
	Overview

	Related Work
	MobiDics
	The System, A Short Overview
	Lacking Features

	Functionality approaches
	Ratings
	Comments

	Functionality
	Automatic Update
	User profiles
	Comments
	Ratings
	Method's Information Enhancements
	Search Enhancements
	User Interface Enhancements
	Website
	Android App

	Implementation
	Automatic Update
	Automatic Update At Startup
	Manual Update

	User profiles
	Remote MySQL database
	Website
	Android App

	Comments
	Remote MySQL database
	Website
	Android App

	Ratings
	Remote MySQL database
	Website
	Android App

	Method's Information Enhancement
	User Interface Enhancements
	Website
	Android App

	Possible Improvements
	Recommendation system
	Sorting algorithms for the comments
	Popularity algorithm

	Conclusion
	List of Figures
	Bibliography

