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Kurzfassung

Implementierung einer Entwicklungswerkzeugkette für die Simulation mobiler
Endgeräte unter Verwendung der ROS Middleware

Mobile Endgeräte sind mittlerweile fester Bestandteil unseres täglichen Lebens. Neben
immer leistungsfähigeren Prozessoren und größeren Speichern sind die Geräte auch mit
einer Vielzahl von Sensoren und Ausgabeeinheiten ausgestattet. Kontextsensitive Anwen-
dungen nutzen zum Beispiel die Daten der Sensoren, um dem Benutzer eine einfachere
Bedienungs zu erlauben. Die von moderer Grafikhardware angesteuerten hochauflösenden
Displays ermöglichen viele neue Konzepte um den Nutzer mit notwendigen Informationen
zu versorgen. Die Entwicklung der entsprechenden Software wird dadurch jedoch im-
mer aufwändiger. Gleiches gilt für das Testen, denn solche Anwendungen sind von vielen
Faktoren abhängig, die in einer Laborumgebung teilweise nur unvollständig nachgestellt
werden können.

In dieser Arbeit wurde daher eine Entwicklungswerkzeugkette erdacht und implementiert,
die die Simulation von mobilen Endgeräten in einer virtuellen Umgebung erlaubt. Das
Konzept beleuchtet dabei alle gängigen Sensoren und Ausgabeeinheiten von Mobilgeräten
und gibt Ideen zur Umsetzung dieser Einheiten in einer 3D Simulation. In einer virtuellen
Umgebung können damit zum Beispiel viele verschiedene Szenarien erstellt werden, die
umfangreiches Testen von Anwendungen erlauben. Exemplarisch wurde ein System zur
Videoeingabe und -ausgabe realisiert, mit dem Kameras und Displays simuliert werden
können. Für die Realisierung wurde die Robot Operating System (ROS) Middleware einge-
setzt, für die bereits viele Werkzeuge zur 3D Simulation von Hardware existieren.
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Abstract

Mobile devices have become an inherent part of our daily lives. Besides the increasingly
powerful processors and larger memories, the devices are equipped with a variety of different
sensors and output units. The data from the sensors are for example used by context-aware
applications to provide a better user experience for the user. High-resolution displays,
driven by powerful graphics hardware, enable new concepts for providing users with helpful
information. However the development of software, which supports these features, is getting
more and more complex. The same holds for the testing, as those applications depend on
many factors, that can often only be tested incompletely in an artificial lab environment.

Thus a development toolchain for the simulation of mobile devices in virtual environments
was conceived and implemented in this work. All common sensors and output units are
considered and ideas for implementing those units in a 3D simulation are given. Deploying
the simulated system in a virtual environment allows for instance to create several sce-
narios, that enable extensive testing of mobile applications. A system for video input and
output was realized exemplarily, which allows the simulation of cameras and displays. The
realization was done using the Robot Operating System (ROS) middleware, as there exists
already a large set of tools for 3D simulation and for simulation of hardware components.
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Chapter 1

Introduction

Mobile devices are “the swiss army knives of the 21st century” [1]. This statement from
2004 is today already the reality. Smartphones, Tablet PCs, handheld Personal Digital
Assistants (PDAs) and other mobile devices are integral parts of our daily lives and a
life without them can not be imagined anymore. The small pocket devices accompany
us everywhere. They are our communicators, calendars, cameras, encyclopedias, toys and
many more. In 2012 the sales of mobile devices will even outnumber the sales of notebook
and desktop PCs together [2]. Over 1.6 billion mobile devices were sold worldwide in 2010
[3]. The first quarter of 2011 even exceeded last year’s sales by 19 percent with a whole of
428 million devices [4].

1.1 Motivation and Goals

Due to the large demand in mobile devices, the manufacturers of the portable devices
release new devices on a daily basis. On the one hand, this advance is helpful for the
mobile device application developers, since the new devices come with bigger and better
displays, larger memory and faster processors. On the other hand, they have to support
an enormous number of different hardware with different operating systems and versions,
to reach a large number of users. Solely the effort for testing the software on the many
different platforms is tremendous.

Besides the increasingly powerful hardware, mobile devices are today equipped with a large
number of different sensors, like accelerometers, GPS, ambient light sensors or short range
radios. Including sensors in a user device offers more information about the user’s context.
Knowing what the user is doing, where he is, how he feels and what is next to him, enables
to create a completely new user experience. Correctly interpreted contextual information
can for example help the user focus on what is important for him at the moment or even
in life.

This new complexity is great challenge for both, hardware and software creators. Hard-
ware developers are continuously adding new units to the phone, but have to make sure
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Chapter 1 Introduction 7

that the usability of the device is kept or, ideally, even enhanced. Software developers
have to handle, combine and process a lot of information in order to create context-aware
applications that really add value for the user. Building prototypes for the evaluation of
new hardware and software features is very time-consuming and costly. In addition to the
development, the verification of the many different features is getting harder from day to
day. Many things can even not be tested in an artificial lab environment.

In order to improve the development and testing process of mobile phones and application
for them, a new method is proposed in this work. Shifting the primary evaluation and a
major part of the complete testing into a virtual environment with a powerful simulation
engine can facilitate and accelerate these processes.

1.2 Outline of the thesis

The remainder of this works is arranged as follows. Chapter 2 gives a general overview of
the current situation in mobile phone development and shows a future prospect in the view
of virtualization. The virtualization of a mobile phone and its sensors and output units is
described in Chapter 3. The implementation of a virtual video input and output system for
the Robot Operating System (ROS) middleware is presented in Chapter 4. Based on this
virtual video system, a complete toolchain using the Android device emulator is described
in Chapter 5. The implemented system and its components are evaluated in Chapter 6.
Chapter 7 concludes the work and gives and idea, what can be done with this toolchain in
the future.



Chapter 2

Mobile Phone Development – A Future
Concept

Before a concept for the enhancement of mobile application development can be be created,
one has to analyze the current situation and identify the deficiencies and needs. Section 2.1
gives an overview of the current state of the mobile software development and tries to
identify the major problems, based on representative surveys. In Section 2.2 the new
concept of simulating mobile devices in an virtual environment is introduced and it is
described how it can resolve some of the major problems of today’s mobile application
development. To verify the theory, a sample development toolchain for the simulation of
mobile devices was implemented using the Robot Operating System (ROS) middleware.
The basics of the implementation are explained in Section 2.4, before it goes into the details
of the system in the following chapters.

2.1 Development today

In January 2011, Appcelerator and IDC surveyed 2,235 developers on perceptions sur-
rounding mobile operating system priorities, feature priorities and mobile development
plans in 2011 [5]. The following three major trends were identified by the survey:

• “Always connected, personal, and contextual”. This is the main slogan for the future.
It is expected, that in addition to cloud services, the integration of social and con-
textual (especially location) services will define the majority of mobile experiences.

• Rapid Innovation: on average, each developer will work on 6.5 different mobile ap-
plications in 2011 (2010: 2.3). The companies try to minimize time-to-market and
update cycle time for not falling behind.

• Cross-platform will be mandatory. Most applications will at least support iOS
(iPhone and iPad) and Android (phones and tablets), since these systems have the
largest market share.
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Chapter 2 Mobile Phone Development – A Future Concept 9

These results show, that there will be a race of software innovations, similar to the ongoing
race of hardware innovations. New applications will have more features than ever before.
But the time spent for development, evaluation and testing should at the same time be
less then 50% then before.

Looking at another VisionMobile survey from mid 2010 [6] shows, that these goals will be
very hard to reach. Although there are already good development tools, like integrated
development environments (IDEs) or device emulators, for most of the platform, debugging
and testing of mobile application is still a major issue. In most cases, testing of mobile
applications is done by manual execution of test cases and visual verification of the results.
In addition to the tests done by developers themselves, the second choice are internal
beta testers. Peer reviewing, focus groups and external testers are to expensive or to
time-consuming for most of the companies.

For the development and testing of user interfaces for mobile devices already some strate-
gies and tools are available. Examples are the user centered design (UCD) concepts like
introduced in [7]. With eggPlant [8] for iPhone and Robotium [9] for Android phones, there
are beginnings of automated user interface test frameworks available for mobile devices.
These tools offer support for almost all UI elements and thus can perform a variety of test
cases, derived from different scenarios. But the available tools can only simulate touch
input events. Other sensor inputs cannot be simulated with these tools.

To ease the development and testing of mobile applications, the vendors include a de-
vice emulator in their software development kits (SDKs). They emulate the basic device
hardware and possess a standard system image, which includes a standard version of the
mobile operating system and some tools. Some emulators offer settings for changing hard-
ware values. For example, the Android emulator allows to set different screen resolutions
and densities. Furthermore the connectivity to the networks and the battery status can
be changed during runtime. The emulator even allows to use an audio and NMEA 0183
compliant GPS devices from the host.

But other sensors’ data, like accelerometer or thermometer data, cannot be set during
runtime. Due to this reason, tools have been created, that allow setting these sensors’
values. OpenIntents has developed the Android SensorSimulator [10]. Is is an client-server
application that allows to set accelerometer, compass, orientation and thermometer data.
The values can even be biased with adjustable, random noise. A simple GUI allows to
set the device orientation intuitively. Following the client-server principle, a live camera
feed for Android is enabled by [11]. It supports several different image formats and net-
work protocols. The big disadvantage of these tools is, that one has to add code to his
application, which enables to use this simulated data. Although the tools try to mimic the
behavior of the real sensor interfaces, there are some differences and two different codes
have to be maintained: one for the emulator with the simulated sensors and one for the
real devices.
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Figure 2.1: The Samsung Sensor Simulator GUI. It enables to set several sensors’ data for
use with the Android emulator. Source: [12]

The Samsung Sensor Simulator [12] is similar to the OpenIntents SensorsSimulator, ex-
cept for the fact that Samsung delivers a modified system image for the Android simulator.
Exchanging the original system image with the modified image allows to access the ori-
entation, magnetic field, accelerometer, light and proximity data exactly like it is done
on the real device. When working with the Samsung Generic Android Device profile for
the emulator, one can further use the following sensor data: gravity, linear acceleration,
rotation vector, pressure, temperature and gyroscope. In addition to the live manipulation
of these values, the Eclipse integrated tool also allows to record and playback sensor data
scripts. A screenshot of the GUI is depicted in Figure 2.1.

One can see that there are already several accessories, that can enable faster development,
evaluation and testing. But the testing paradigm using these tools stays the same: testing
of mobile applications is done by manual execution of test cases and visual verification of
the results.



Chapter 2 Mobile Phone Development – A Future Concept 11

2.2 Going virtual – a new concept

As the survey in Section 2.1 showed, faster development and testing will be needed to keep
track with other competitors. For context-aware applications, it is no longer sufficient to
have tools that only test the user interfaces. A complete toolchain for testing more aspects
of the new generation software is necessary.

How could such a toolchain look like? A simple solution would be to take one of the
available sensor simulators, and extend it with further important sensors. An image stream
for the camera could for example be added, that could be fed by a webcam or a simple
video file. In order to perform automated testing, parts from the automated user interface
testers can monitor the device’s outputs. With the help of a simple scripting engine, sensor
data variation for various test cases could be created once and replayed in every test cycle.

Although this concept enables automated and repeatable testing, it is very unintuitive
and artificial. The creation and the variation of test cases for this tool would be very
complicated. The creator of the scripted test cases has to keep in mind the timing, causality
and dependencies of the events, all the time. In this way, a simple test case can quickly
become a very complex task.

In order to facilitate this process, the concept of virtual prototyping can be applied. A
virtual prototype is “a computer simulation of a physical product that can be presented,
analyzed, and tested” [13]. The definition is often limited to the simulation of physical
properties like form or design. But Lister et. al also used the term for a 3D simulation of
a digital mock-up which was driven by full system level hardware simulator [14]. Thus the
virtual prototype could be used like a real electronic product. This concept will be used
and evolved, in order to create an intuitive development and testing toolchain for mobile
devices.

The basis of the toolchain is a virtual environment, in which a 3D model of the mobile
device is operated. This allows the user to see, how the device looks like. In addition to
that, the device is made functional by a software system that is interconnected with the
virtual environment system. Figure 2.2 shows the coupling of the virtual environment to a
mobile device simulator. The sensors, that are also simulated in the virtual environment,
make their data available for the mobile software simulator. In turn, the different outputs
of the software simulation tool are sent back to the virtual environment, which can render
these outputs to the mobile device model. The virtual environment, in which the device is
simulated in, does not have to be an empty 3D space. It can portray a real world scenery
or a fictive, futuristic world. Rigid body simulation further adds basic physical laws to the
virtual reality environment. This allows the perception of the device and its functionalities,
like in the real world. In this way, the user can easily comprehend the actual state of the
mobile device. Established 3D input equipment, such as the 3D mouse SpaceNavigator
from 3Dconnexion, can be used for navigation and manipulation in the environment.

To enable the automated testing, a external testing instance has to be added. The principle
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Virtual Environment

Mobile device simulator

Sensor data

Output data

Figure 2.2: Coupling of the virtual environment to the mobile device simulator.

Virtual Environment

Mobile device simulator

Sensor data
from the virtual environment

Output data

Testing instance

Control test flow

generated 
Sensor data

Figure 2.3: A testing instance is necessary to enable automated testing.

of the new system is shown in Figure 2.3. The testing instance is not only used for the
evaluation of the device’s outputs, but also controls the flow of test processes. Besides,
this element also generates some sensors’ data, that cannot be simulated in the virtual
environment. An example for generated data is the temperature value from a thermome-
ter, because most virtual environment do not support the simulation of thermal effects.
But since this instance is connected to the environment and to the software simulator
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anyway and also coordinates the whole automatic testing process, this adds no additional
complexity to the simulation. The state of those not directly in the simulation percepti-
ble effects, can be displayed to the user with the help of common visual indicators in the
virtual environment.

Considering the mobile software simulator, that gets the data from the simulated device
(both from the virtual environment and the test instance), there are two basic concepts,
how it can be implemented. If one only wants to quickly verify a new algorithm for mobile
devices, that depends on one or more sensors, the software can directly be run on the host
PC and use the defined interfaces to device simulation environment. In the case, that an
implementation for a specified mobile device has to be tested, a fully featured mobile device
emulator can be connected. In both cases, the development and testing can be significantly
accelerated.

As a sample scenario a simple object detection for example for cups running on the mobile
device shall be considered. In order to perform a proper test of the implemented cup
detection algorithm, one needs to take several hundreds or thousands of photos, as one
needs photos:

• from different perspectives and angles,

• showing various shapes of available cups,

• different graphical designs,

• at all thinkable light conditions,

• included in different object sceneries

• and seen on different backgrounds.

Whereas in a virtual environment, one can simply load different 3D models of cups, having
every imaginable texture, standing in various sceneries and on distinct backgrounds. The
whole scenery can be rendered from every thinkable perspective and with different light
conditions on demand. Solely the data acquisition in the real world would probably take
longer, then the complete testing in the virtual environment.

In addition to the fast variation and generation of test scenes, a complete virtual system
further enables recording and playback of all test and output data. This can either be
used for sharing test data with other developers and tester or for the reconstruction of
malfunctions. This is especially useful for debugging applications, that depend on various
inputs.

In summary, a development toolchain for mobile devices, that allows simulating the device
in a virtual environment, has several advantages:

• Intuitive usage and rapid visual verification thanks to the 3D simulation.
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• Advancing simulation time and appliance of basic physical laws ensure causality in
the testing environment.

• Fast generation, variation and execution of test cases.

2.3 Demarcation of the term virtual

Before the basics of the prototypical implementation can be explained, it has to be clarified
what is meant by the term virtual in this work. When talking about a virtual environment
(VE), a computer generated 3D setting is meant. The representation of this setting can be
realized in various ways, but this is not relevant for the definition of our VE. When referring
to a virtual mobile device, the 3D model of the device and its simulated functionalities are
meant. The virtual device is a resident of the virtual environment.

The virtual mobile device can be equipped with several virtual sensors and virtual output
devices. The term virtual here only implies, that these sensors and output devices are
parts of the virtual model, that is simulated in the virtual environment. This can be
either be units, that emulate the characteristic behavior of real devices, or complete novel
devices with a new functionality. Especially the definition of virtual sensor is important.
In contrast to the meaning in this work, Kabadayi et al. defined a virtual sensor as an
abstracted sensor, that encapsulates the data from several sensors [15]. And yet other used
the term virtual sensor for data from a calendar [16], social-networks or other web-based
services.

2.4 Prototypical implementation using the ROS
middleware

In order to evaluate the proposed concept, an implementation of the suggested development
toolchain was created in this work. For the simulation of mobile devices in a virtual
environment, the Robot Operation System (ROS) was chosen [17]. The ROS is one of
the major middleware systems in the domain of robotics, running for example on the
PR2 [18] or the Fraunhofer Care-o-Bot III [19]. Recently, it is also used for immobile
robots (ImmoBots) such as “intelligent environments“ or ambient assisted living (AAL)
environments [20]. The Cognitive Office [21] is for example a fully featured intelligent office
environment, that uses the ROS as background system for the real implementation and for
a complete 3D simulation.

The ROS is particularly suitable for the proposed toolchain as it provides sophisticated
hardware and software abstraction and message passing. In addition to that, the middle-
ware brings along several visual multi-robot simulation tools, for example the 2D simulator



Chapter 2 Mobile Phone Development – A Future Concept 15

Stage and the 3D simulator Gazebo. Both tools are parts from the Player/Stage middle-
ware, which has already been used for intelligent environments, such as the AwareKitchen
[22], before. In order to get a simulation that is something like a synthetic mirror of the
real world, 3-dimensional simulation is performed. For this reason, Gazebo is mainly used
for the simulation. As the whole ROS and its packages are open source with permissive
licenses, the components can easily be customized and extended.

The Gazebo package for the ROS already offers some virtual sensors which can be deployed
in the virtual environment. These are: cameras, laser scanners, an inertial measurement
unit (IMU) [23], bumpers and an odometry sensor. It further provides output units, like a
differential drive or a pattern projector. These elements, mainly designed for robots, can
serve as models for the implementation of the sensors, that are needed for the simulation
of a mobile device. Other key features of Gazebo are the rigid body dynamic simulation,
which is realized by the Open Dynamics Engine (ODE) library [24], and a plugin system,
which allows to add functionalities dynamically during runtime. The graphics renderer is
based on OGRE (Object-Oriented Graphics Rendering Engine) 3D rendering engine [25]
and the graphical user interface (GUI) is realized with wxWidgets [26].

The mobile software for the simulation is implemented in two different ways. For testing
software algorithms, the software behind the model in the simulation is developed and run
as a standard ROS node on the PC. For testing mobile applications on a mobile system,
the Android emulator from the Android SDK [27] is used. The integration of the emulator
is described in Chapter 5.



Chapter 3

Virtualization of a Mobile Device

This chapter describes how a virtual mobile device can be modeled and how its virtual
sensors and output units can be implemented in a virtual environment. As already men-
tioned in Chapter 2, the ROS middleware was used for the prototypical implementation.
The complete sample toolchain, which is presented in Chapter 5, further uses the Android
emulator. For that reason, the examples for implementation ideas are focused on those
tools. But the underlying principles are also valid for other systems. In most cases the
given concept can easily be transfered to other solutions.

3.1 The 3D Model of the Mobile Device

The first step in the virtualization process is the creation of a 3D representation of the
mobile device. This can either be an early sketch, a simplified or detailed model. But as
virtual prototyping is anyway the standard for the development of those products, detailed
3D models will already be available in an early stage. By using the metric system for the
model of the device and for the creation of the virtual environment, the user can see the
the device in perspective.

Besides the physical dimensions, the constant rigid body properties of the model have to
be set [24]. Those are the mass of the body, the position of the center of mass and an
inertia tensor, which describes how the body’s mass is distributed around the center of
mass [28]. For a proper collision detection, a proper bounding box has to be set. This can
either be the model itself or a simple box, which surrounds the original model. Gazebo
offers a special view for the visualization of the collision bounding boxes, that can be used
to verify the setting. In Gazebo, robots and smart objects are described in the Unified
Robot Description Format (URDF) [29]. It holds the kinematics, the visual representation
and the collision model of the robot. The URDF is primarily made up of two different
basic elements: links and joints. Links specify rigid body parts which are described by the
properties stated above. Joints are used to describe the linkage of two links.

16
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Code snippet 3.1.1 URDF description for a cube with mass and collision settings.
<link name="simple_box">

<inertial>

<origin xyz="0 0 0.25" rpy="0 0 0" />

<mass value="1.0" />

<inertia ixx="0.042" ixy="0" ixz="0" iyy="0.042" iyz="0" izz="0.042" />

</inertial>

<visual>

<origin xyz="0 0 0" rpy="0 0 0" />

<geometry>

<box size="0.5 0.5 0.5" />

</geometry>

<material name="Cyan">

<color rgba="0 255 255 1.0" />

</material>

</visual>

<collision>

<origin xyz="0 0 0.25" rpy="0 0 0" />

<geometry>

<box size="0.5 0.5 0.5" />

</geometry>

</collision>

</link>

Code Snippet 3.1.1 shows a sample URDF definition of a 3D cube model. It has a defined
mass of m = 1.0 kg and an edge length of s = 0.5 m. The collision model has the same
size, orientation and position like the visual geometry. The inertia tensor has only entries
for the principal axes of the cube. Its calculation is shown in Equation 3.1, which follows
the example in [30].

Icube = m
s2

6

1 0 0
0 1 0
0 0 1

 = 1.0 kg
(0.5 m)2

6

1 0 0
0 1 0
0 0 1

 ≈ 0.042 kg m2

1 0 0
0 1 0
0 0 1

 (3.1)

The inertia tensor Icube given in Equation 3.1 is only valid for a cube. But most mobile
devices can not be matched with the shape of a cube, but rather with the shape of a more
general cuboid. For this reason, the formula for the inertia tensor of a cuboid is given in
Equation 3.2 with h describing the height, w the width and d the depth of the cuboid.



Chapter 3 Virtualization of a Mobile Device 18

Icuboid =
1

12
m

h2 + d2 0 0
0 w2 + d2 0
0 0 h2 + w2

 (3.2)

For the visual geometry of the mobile device, a ready-made 3D model, available from
various 3D artists or manufacturer, can be used as basis. However it should be kept in
mind, that the use of high polygon count models may slow down the simulation and add
unnecessary complexity. Especially for the collision model one should consider the use of
simple geometric forms like boxes, cylinders or spheres, that cover the outline of the visual
geometry.

Figure 3.1: The current Android developer phone Google Nexus S.
Image Source: http://androidhandys.de/samsung-nexus-s.html

For an example implementation, a model of the current Android developer phone Google
Nexus S was chosen. The phone is depicted in Figure 3.1 and has the following outlines:
h = 123.9 mm, b = 63 mm and d = 10.88 mm. Its overall weight is 129 g. Code Snip-
pet 3.1.2 shows the URDF definition of the mobile phone based on a 3D Collada model
and the above specifications. In order to reduce simulation complexity, the collision model
is described by a box which surrounds the whole visual model.

http://androidhandys.de/samsung-nexus-s.html
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Code snippet 3.1.2 URDF description for the Google Nexus S model.
<link name="simple_box">

<inertial>

<origin xyz="0 0 0" rpy="0 0 0" />

<mass value="0.129" />

<inertia ixx="0.000166" ixy="0" ixz="0"

iyy="0.000044" iyz="0" izz="0.000208" />

</inertial>

<visual>

<origin xyz="0 0 0" rpy="0 0 0" />

<geometry>

<mesh filename="google_nexus_s.dae" />

</geometry>

</visual>

<collision>

<origin xyz="0 0 0" rpy="0 0 0" />

<geometry>

<box size="0.063 0.1239 0.01088" />

</geometry>

</collision>

</link>

The 3D model of the Google Nexus S was originally distributed as a Wavefront OBJ file.
Although Gazebo supports OBJ files, the model was displayed erroneously in Gazebo. It
was rendered more as a wireframe model with several holes in its surface. The faulty
rendering of the OBJ file can be seen in Figure 3.2.

For this reason, the model was converted to a 3D Collada file using MeshLab 1.3.0a [31].
The Collada mesh file could be loaded in Gazebo, but the model was rendered partly
transparent from the back. The erroneous representation of the Collada model is depicted
in Figure 3.3. The reason for the faulty rendering of the Collada mesh is probably a wrong
alignment of face normals.

Although several days were spent on the wrong rendering of there models, the problem
could not be isolated. The debugging of the models was very hard, since all tested 3D
modeling and mesh processing tools, such as Blender, Autodesk 3ds Max or MeshLab,
displayed the model files correctly. In addition to that, the loaded Collada model leaded
to random Gazebo crashes due to shading buffer overflows. The problem is already known
[32]. It is caused by models with a high triangle count and as a temporary fix, it was
recommended to switch off shadows. In a future release, the issue will be fixed by switching
to a more inexact but simpler shadow technique. Due to the many problems with the high
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Figure 3.2: Faulty rendering of the Wavefront OBJ model in Gazebo.

detail Google Nexus S model, a simplified model for a mobile device was created.

The base of the simplified model is a black box with the outlines of the Google Nexus
S. The display is another very-thin box on the front-site of this basic box. Besides the
display, the camera was modeled as a cylinder on the back-site of the model. It is depicted
in Figure 3.4. In order to have a realistic model of a mobile phone, the other physical
details, such as mass or inertia data, also correspond to the Google Nexus S model.

3.2 Level of Abstraction and Correctness

In Section 3.1 it was already mentioned, that one has to think about the desired degree of
detail. Of course, a photo-realistic 3D model is visually more attractive, but for engineering
new kinds of applications, a simplified version without non-functional elements is in most
cases sufficient. The same consideration has to be done for simulated sensors and actuators.
Choosing a high level of abstraction can significantly cut down the implementation time.
However it can lead to inaccurate models, that do not reflect the identical functionality
of the real device. Hence one has to define the adequate degree of detail for each element
prior to the implementation.

When one wants to test a new kind of hardware for a mobile device, it could for example
be necessary to use a model, that also includes physical effects. For example, when testing
a magnetometer, which should be used as a digital compass, the electromagnetic radiation
from other electronic devices and the distortion from ambient magnetic materials have to
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(a) Front view. (b) Faulty back view.

Figure 3.3: The Collada model in Gazebo.

(a) Front view, the device’s
display is shown in blue.

(b) Back view, the gray cir-
cle adumbrates the camera.

Figure 3.4: A simplified model of a mobile device.
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be considered. But while the development of an application, that uses orientation data
from the magnetometer, it is in most cases sufficient to add some random error or constant
offset to the perfect data.

Since the focus of this work is to create a toolchain which allows simpler application
development, the following implementation ideas are described in a high abstraction level.
The goal is to describe the basic functionality considering only the most important and
common errors and outside influences. But at the same time, it should be kept in mind,
that there are always several effects, that are not modeled or only can simulated with great
effort. Those are, for example, physical effects like:

• Electronic noise, which can distort signals or can lead to wrong sensor values (for
example when using analog-to-digital-converters ADC)

• Quantization errors and distortion, since the simulation is running completely in the
digital domain.

• Physical limitations and constraints, like the Nyquist-Shannon sampling theorem or,
more specific, the imaging of a lens system.

• Interference and malfunctions of devices, which can lead to unpredictable errors.

In addition to those hard to model effects, the correctness of the model is another key
point. Particularly for complex systems, the correctness is hard to proof. For manageable
systems, model checking is a promising starting point for the verification of the required
specifications. But the effort to describe the specifications, for instance in temporal logic,
can grow exponentially with the complexity. As a consequence, it is again reasonable to
concentrate on the substantially needed functions. In the ideal case, the model can be
simplified in such a way, that it can be verified with a small number of test cases.

3.3 Virtual Sensors

A sensor is a device that produces a measurable response to a change of a physical quantity.
In mobile devices sensors are mainly used to determine the context of the device. In the
following subsections, the common and some not yet common mobile device sensors and
values, which can be derived from other devices, are explained and analyzed. Based on the
explanation of the sensors and the derived values, it is sketched how they can possibly be
simulated in the virtual environment.

3.3.1 Location

The research introduced in Section 2.1 has clearly shown, that location-based services
(LBS) are a running up field for mobile application. The location is a very important
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context which for example allows navigation, finding of nearby points of interest (POI) or
location adjusted advertising. In general one can distinguish between outdoor and indoor
localization methods.

GPS – The main outdoor position provider

The Global Positioning System (GPS) is today’s most popular choice for positioning in
open-sky environments. The system uses 24 operating satellites that transmit one-way
signals at the same instant. These signals, moving at speed of light, arrive at slightly
different times at the receiver, because some satellites are further away than others. Out
of these delays and the Ephemeris data, which is included in the signal, the distance to the
satellites can be calculated. When at least four satellites’ signals are received, the GPS
receiver can determine its current position in three dimensions. The position is commonly
handled in geographic coordinates, which means that one will get the latitude (Lat) and
longitude (Long) of the current position. Due to the low signal level of the GPS signals
and thus the need for a direct view to the satellites, standard GPS receivers are often
very unreliable in urban areas. Another problem is the duration for acquiring a GPS
lock. The so called Time To First Fix (TTFF) can easily exceed ten minutes in some
situations. In order to counteract those problems, most mobile devices are today equipped
with Assisted GPS (A-GPS) [33]. A-GPS makes use of GPS acquisition data broadcasted
by the mobile network base-stations, that have reliable GPS receivers. With the help of
this initial data, the TTFF can be improved by many orders of magnitude [34]. Additional
provided sensitivity data from the network can further facilitate the signal reception in
adverse areas and in some cases even inside buildings.

Besides the NAVSTAR GPS, which is operated by the US military, there are several other
global satellite navigation systems in development. The Russian GLONASS system is in a
renewal phase and global coverage is expected to be reached within 2011. A new generation
of satellites, called GLONASS-K, is currently under development. The Galileo positioning
system from the European Union and the Chinese COMPASS navigation system are in the
initial deployment phase. Galileo is expected to be compatible with the modernized GPS
systems, but due to several delays, the system is scheduled to be fully operational by 2020
at the earliest. This development shows, that global navigation satellite systems will most
likely remain the main system for outdoor navigation. The renewed systems will enhance
the accuracy and the reliability.

A patch for adding GPS capabilities to Gazebo is available at [35]. The patch includes
model and world files for the demonstration of the GPS interface. The current implemen-
tation only supports perfect GPS localization, but error injection could be added without
great effort. Code snippet 3.3.1 shows a sample Gazebo model entry for a GPS sensor.
The stated position, expressed as LatLon, represents the starting coordinates. When the
object moves, to which the GPS sensor is attached to, the position is updated with respect
to the starting position. By using the Universal Transverse Mercator (UTM) coordinate
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system for the addition of the moved distance, the resulting LatLon coordinates are very
accurate, just depending on the accuracy of the starting point coordinates. In order to use
this extension with ROS a position publisher or service to query the current position has
to be implemented.

Code snippet 3.3.1 A GPS sensor sensor included in a Gazebo model description.
<sensor:gps name="gps_1">

<LatLon>48.148940 11.566730</LatLon>

<controller:generic_gps name="gps_controller_1">

<interface:gps name="gps_iface_0"/>

</controller:generic_gps>

</sensor:gps>

In order to create a realistic functionality, the GPS receiver should not work indoors.
The distinction of indoors and outdoors could be added to the world file: polyhedrons
can be used to define the 3D space of indoors. When the device’s coordinates lay within
these polyhedrons, the GPS service should not work. Another advantage of using this
3D description is, that GPS reception could also be enabled next to windows or building
entrances by adding a margin for these regions.

Indoor localization

Localization is not only of interest outdoors, but also indoors, where the mobile computing
devices spend most of their time. Unfortunately the satellite based navigation systems do
not work reliably indoors, because of their low signal levels. Even if the satellites’ signals
can be received, the position error is often very large, due to multi-path propagation and
other disturbing effects. For this reason, there are several other approaches available.
Most of these do not use special sensors for this, but rather use data from already available
sensors.

Torres-Solis et al. distinguish in their review of indoor localization technologies [36] be-
tween the technologies:

• Radio frequency waves: personal and local area networks, broadcast and wida area
networks, Radio Frequency Identification (RFID) tags and radar.

• Photonic energy: visible (camera images) and invisible light (infrared (IR)/ultraviolet
(UV) sensors).

• Sonic waves: commonly ultra-sonic.

• Mechanical energy: inertial (Inertial Measurement Unit (IMU)) or contact sensors.
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• Atmospheric pressure.

• Magnetic fields.

The principal localization techniques can be roughly classified in these fields (according to
[36]):

• Lateration (signal traveling time or path loss) and Angulation (multiple re-
ceivers/antennas).

• Proximity: exploit the limited range of signals.

• Scene analysis (monitor a wide area to detect subject of interest) and Pattern
matching (Fingerprinting).

• Dead reckoning: calculate localization information based on previously-estimated
data.

These distinctions are a good starting point for an ideation for (new) indoor positioning ap-
proaches. The relevant mentioned technologies and methods are explained in the following
sensor descriptions. The

3.3.2 RF Signals and Network Connectivity

Following the ubiquitous connectivity paradigm, today’s mobile devices are capable of nu-
merous RF technologies. Almost every mobile device has a GSM/UMTS transceiver, a
Wireless LAN transceiver, a Bluetooth transceiver and a FM radio receiver. Recently,
the manufacturers began to implement Near Field Communication (NFC) chips into the
devices. This development enables not only a deeper integration of the devices in the Inter-
net of Things [37] but also the use of RF signals for the determination of other contextual
information.

One popular field of application is the indoor localization. By measuring the received signal
strength (RSS) or the time of arrival (TOF), the distance to a sender can be calculated.
When the positions of the senders are known and enough reference points are available
(at least three for the localization on a plain or four for 3D localization), the own position
can be calculated by applying lateration methods. Instead of calculating the distance to
the senders, fingerprinting makes use of pattern matching methods. During the initial
data collection procedure, several measurements are performed in order to create a map
with characteristic fingerprints, which consist of a list of all receivable transmitters with
their respective hardware addresses and signal strengths [38]. The assumption, that similar
fingerprints come from locations that are close, allows to compare the online fingerprints
with the ones from the offline training phase and to estimate a location with the highest
fingerprint similarity.
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The cell ids and signal strengths from GSM can be used to determine the rough area the
device is in. WLAN is today the most common used RF technology for indoor localization
on mobile devices. An approach using in-house FM radio transmitters can be found in
[39]. Ultra-Wide Band (UWB) is another RF technology that is often used for indoor
localization [40], but is not (yet) implemented in today’s mobile devices.

The signal strength can further be used to determine the actual connectivity and link speed
for data services. By calculating, for example, the Signal-to-Noise Ratio (SNR) the receiver
can determine the quality of the current connection and adapt the modulation scheme and
thus the link speed.

Both applications are interesting for the simulation in the virtual environment. But the
simulation of radiowave propagation is very complex and thus only a simplified model can
be realized with reasonable expenditure. A sample implementation could look like this:
the basic building blocks are clients and base stations. These functional blocks can be
bound to objects in the simulation. In order to calculate the quality of the connection, the
link budget is calculated in adjustable intervals for every client. The received power PRX
(dBm) can be calculated in the logarithmic domain with the Equation 3.3 [41], [42]. The
indicated common values are valid for 2.4 GHz WLAN in Germany.

PRX = PTX +GTX − LTX − LFS − LOB − LM +GRX − LRX (3.3)

where,

• the transmitter output power PTX (commonly 10 to 20 dBm), the transmitter an-
tenna gain GTX (commonly 6 to 9 dBi for omni-directional antennas) and the trans-
mitter losses LTX (commonly -3 to −10 dB, cable and connector losses) are directly
set in the base station’s model file.

• the free space loss LFS follows Friis transmission equation [42] with the distance
being the euclidean distance between the base station and the client:

LFS (dB) = −27.55 dB + 20 · log (frequency (MHz)) + 20 · log (distance (m)) (3.4)

• the obstacle (no line of sight) loss LOB (dB), which is determined by performing a
ray cast from the client to the base station summing up the distances traveled within
(solid) objects. As a clue one can assume an attenuation of 110 dB/m, as it occurs
for 2.4 GHz WLAN through solid walls [43].

• the miscellaneous losses LM (in dB) through effects like fading or interference. This
value should be calculated randomly, characterized by a reasonable probability den-
sity function (pdf).

• the receiver antenna gain GRX (commonly 6 to 9 dBi for omni-directional antennas)
and the receiver losses LRX commonly -3 to −10 dB, cable and connector losses) are
directly set in the client’s model file.
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This model considers the free space propagation and the basic loss through obstacles in
the line of sight. With the random miscellaneous loss, small-scale fading effects are also
covered. An omni radiation pattern and a symmetric channel is assumed in the simulation.

A hardware address can also be defined for the virtual base stations. This allows to perform
fingerprinting and distance estimations to fixed targets like in real world scenarios. By
defining a minimum receiver sensitivity (typically -80 to −95 dBm for IEEE 802.11b), it
can be determined whether a link can be established or not. Via predefined receiver power
levels, the link speed can be determined. This value can be used, for instance, to set the
connection speed of the Android emulator.

3.3.3 Accelerometer and Gyroscope

An accelerometer is an electromechanical device that measures the proper acceleration of
the device in terms of the force of gravity (g-force). Most modern accelerometer are mi-
cro electro-mechanical systems (MEMS), but also devices with piezoelectric, piezoresistive
and capacitive components exist. Almost all mobile devices are equipped with a 3-axes
accelerometer today. By measuring the the static acceleration due to gravity, the tilting of
the device with respect to the earth can be found. The dynamic acceleration occurs during
movements and can help be used to analyze the current movement. These acceleration
values can for example be used for:

• Automatic screen alignment (switching between portrait and landscape mode) de-
pending on the direction the device is held.

• Controlling applications and games through intuitive user input (for example as steer-
ing wheel for racing games).

• Automatic image rotation depending on the direction the device was held during
taking the photo.

• Image stabilization by the included camera.

• User action determination and evaluation (for example, a pedometer for walking).

• Advanced Automatic Collision Notification (AACN). The mobile device automati-
cally alerts emergency services when the accelerometer detects crash-strength accel-
eration values in a car.

• Inertial navigation systems [44].

• Supervising physical exercising [45].

Since an accelerometer can only determine the orientation relative to the earth’s surface,
modern mobile devices are additionally equipped with Gyroscopes. Gyroscopes are capable
of measuring the rate of rotation around a particular axis. Most devices for consumer
electronics are 3-axes micro electro-mechanical systems (MEMS).
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The combination of the linear acceleration, measured by the accelerometer, with the rate
of rotation, measured by the gyroscope, allows to sense the motion in all six degrees of
freedom (DOF): x-, y- and z-axis, as well as, roll, pitch and yaw rotations. This is especially
of interest for inertial navigation systems (INS), that continuously calculate the position,
orientation and velocity via dead reckoning.

The realization of theses sensor devices can be done with already available Gazebo services.
Calling the service /gazebo/get model state returns the current position and orientation of
the model and its current linear and angular velocity.

Console output 3.3.1 Console output of a model state query.

# rosservice call /gazebo/get_model_state \

’{model_name: mobile_device, relative_entity_name: world}’

pose:

position:

x: 3.32000003565

y: -2.09999989332

z: 0.000305630050682

orientation:

x: -4.50805085577e-05

y: 3.18012224203e-05

z: -2.1465383742e-07

w: 0.999999998478

twist:

linear:

x: -1.73125044903e-07

y: -9.10946262212e-08

z: 8.16639331725e-06

angular:

x: 5.52560915098e-06

y: -4.58489027467e-05

z: -3.26748857349e-07

success: True

status_message: GetModelState: got properties

Console output 3.3.1 shows a sample output for a model state query. The pose is made
up from the position and the orientation. The orientation is given as a unit quaternion
[46]. Twist expresses the velocity in free space broken into its linear and angular parts.
This service can also be used to get the relative position to another object by setting the
relative entity name to the model name of the desired reference object. The acceleration
can be calculated by dividing the velocity change through the elapsed time between two
requests.
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Another alternative is to use the existing RosIMU controller for Gazebo. An inertial
measurement unit (IMU) is an electronic device that combines the data from accelerometers
and gyroscopes to calculate the current velocity, orientation and gravitational forces. The
same task is performed by RosIMU, which can be bound to any link in the simulation.
An URDF usage example is given in Code snippet 3.3.2. It uses the same data like the
Gazebo service introduced before. The major difference is, that Gaussian noise is added
to the values and that they are published automatically with the given update rate to
a specified ROS topic. The controller also performs the differentiation of the linear and
angular velocities in order to display the current accelerations.

Code snippet 3.3.2 URDF description for the RosIMU controller.
<model:physical name="mobile_baselink">

<controller:gazebo_ros_imu name="imu_controller"

plugin="libgazebo_ros_imu.so">

<alwaysOn>true</alwaysOn>

<updateRate>1000.0</updateRate>

<bodyName>mobile_baselink</bodyName>

<topicName>/mobile_device/imu_sensor_data</topicName>

<frameName>map</frameName>

<!-- options to initialize imu for fake localization -->

<xyzOffsets>25.65 25.65 0</xyzOffsets>

<rpyOffsets>0 0 0</rpyOffsets>

<interface:position name="imu_position_iface"/>

</controller:gazebo_ros_imu>

</model:phyiscal>

3.3.4 Magnetometer – Digital Compass

Dead reckoning is a good navigation method when no external references are available. But
without initialization, this method is not applicable for most navigation use-cases. Besides
an initial reference position, a reference orientation is also necessary in order to get the
proper pose. A good choice for a reference orientation system is the magnetic field of the
earth, which is stationary relative to the surface of the earth. In order to determine this
field with the mobile device, a digital compass is necessary. The so called magnetometers,
that are used for mobile devices, are made up by three solid-state magneto-resistive (MR)
sensors [47]. The heading is determined by applying trigonometry rules.

The simulation of the magnetic field of the earth in the virtual environment would be very
costly. For this reason, a strongly simplified model is proposed here. The basic assumptions
of this model are, that the considered area is not very large (e.g. several km2) and that
it is far away from the magnetic poles (e.g. more than 1000 km). This allows to define a
north direction for the whole area. A single determination off the north direction in one
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point of the simulated area is sufficient. Afterwards the angle α in the x-y-plane of the
virtual environment between the x-axis (pointing in the positive x-direction) and the real
north direction has to be defined. In order to avoid ambiguities, the angle should be given
in counter-clockwise direction. This angle can be defined as a parameter for the simulation
world and evaluated by the virtual compass sensor.

y
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α

(a) Map view from Google Maps for “northing” the sim-
ulation world.

y

x

Nor
th

(b) View of the model in its inertial
coordinate system extended with the
graphical determined north direction.

Figure 3.5: North offset determination for Gazebo models.

The example in Figure 3.5 shows how the north direction can be determined by using
available maps. The Cognitive Office is roughly positioned in a north up Google Maps
view in Figure 3.5(a). Following the counterclockwise definition of the north offset angle,
the angle α ≈ 338.5◦ can be determined graphically. This angle can be used for the
whole office in order to calculate the heading of the virtual compass device relative to the
magnetic field of the earth. The orientation of the compass device can be determined as
described in Section 3.3.3.

3.3.5 Altitude Sensor

The altitude or elevation is another important location information. In general it is defined
as the vertical distance between a reference point and the point of interest. For most
applications the altitude is defined as the height above sea level. This information is not
only of interest for mountain climbers, but can also be used for indoor localization. While
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mountain climbers can rely on the altitude measured by the GPS device, it cannot be used
indoors. In addition to that, the altitude accuracy for GPS is only around ±23 m [48].

For that reason, pressure altimeters or baro-altimeters are commonly used for determining
the altitude. The main component of this altimeter type is a barometer that measures the
atmospheric pressure. With increasing altitude the air pressure decreases. Calibrated dig-
ital altimeters with temperature compensation have an accuracy from a fewdm to around
1 m. Due to this accurate values, these devices can be used for example for floor determi-
nation in indoor location scenarios.

The implementation for the virtual environment can again be strongly simplified. Instead
of creating a virtual atmosphere, the data from the object’s 3D pose can be used. For
modeling the sensor variance a random step function capped by an absolute maximum
variance value can be added to the sensor’s measurement.

3.3.6 Touch Sensor and Common Buttons

Touch sensors for displays, also known as touchscreens, or switches have conquered the
mobile device market in the last few years. For 2011 it is estimated, that mobile phones
with touchscreens will have a market penetration of 38.2%. At latest in 2014 the mar-
ket penetration is going to exceed 50% [49]. Especially the recently added multi-touch
capabilities make touchscreens to intuitive input systems for mobile devices.

There are several different touchscreen technologies. But only the resistive and the pro-
jected capacitance technologies have a noteworthy market share today. Resistive touch-
screen panels are basically made up from two layers that are coated with an electrically
conductive material. One having a voltage gradient in x-direction, the other one in y-
direction. Normally those two layers are separated by a narrow gap, but when pressure is
applied to the panel, the two layers become connected and current can flow. The touch
controller can determine the coordinates from the measured current. The projected ca-
pacitance touch (PCT) technology makes use of an electrical field, which is created by a
conductive layer in front of the display. When an electrically conductive object touches
the outer surface of the touchscreen, a capacitor is formed. By measuring the dynamic
capacitor’s capacitance on the corners of the panel, the controller can calculate the touch
location.

Besides the touch input elements, there are normally also push buttons used for special
actions and input, such as power on/off or the volume. Several mobile devices even offer a
complete keyboard for entering text or controlling the device. These buttons are normally
realized by sets of electrical contacts that are either unconnected or connected in the default
state. Changes in the connection state or the connection state itself are detected by an
external circuit which is connected to the different contacts.

A (multi-)touch sensor or a push button in Gazebo can be realized by evaluating the
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collision events of the sensor element. In order to get precise results, the collision geometry
of the sensor should accurately match the visual geometry. Figure 3.6 shows the bounding
box of the simplified mobile device model. The green colored boxes indicate, that the
visual geometry corresponds to the collision geometry.

Figure 3.6: The bounding box of the simulated mobile phone is shown in green.

When two bodies touch in Gazebo, the ODE physics library creates a list of contact points,
describing the points in the world where the bodies touch each other. Code snippet 3.3.3
shows the structure of a contact point. By evaluating the depth one can further create
several pressure stages.

Code snippet 3.3.3 Collisions are described via contact points.

struct dContactGeom {

dVector3 pos; // contact position

dVector3 normal; // normal vector

dReal depth; // penetration depth

dGeomID g1,g2; // the colliding geoms

}

3.3.7 Proximity Sensor

A proximity sensor can be used for contact-less object detection or for distance determina-
tion to objects in front of the sensor. This is reached by emitting an electro-magnetic (EM)
field or radiation. A receiver, placed nearby the sender, evaluates the returned signals and
can thereby provide information about the setting in front of the sensor. This sensor is,
for example, built in the front side of the mobile phones in order to switch off the display
when the user holds the telephone to his ear. But those sensor can also be used for user
input [50].

A realization of this sensor for the simulation can reached by raytracing from a point on
the surface of the mobile device in a specified direction. There are two different kinds of
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sensor devices that can be reached by this method. On the one hand, the sensor can simply
output whether there is an object in front of the device or not. A maximum detection range
could be specified in the sensor description. On the other hand, a distance measurement
sensor can be realized by returning the distance to the nearest object detected during the
raytracing.

3.3.8 NFC and RFID

With the recent addition of near field communication (NFC) chips to the Google Nexus
S, the current Android developer phone, the technology has the chance to find its way
into the global market. Until now, this technology has only been used extensively in Asia,
where it is mainly enabling mobile payment.

The roots of NFC go back to Radio Frequency Identification (RFID). RFID uses radio
frequency waves for the communication. One can mainly distinguish between active and
passive RFID systems. While active systems have their own power source, the passive
systems have to rely on the energy from their active interrogation partners in order to
send their informations. Although this extremely limits the range, the advantage of small
and cheap circuits for those passive tags is devastating. In contrast to the connectionless,
mostly insecure implemented RFID technology, the main advantage of the NFC technology
is the secure connection between two active devices. The pairing is reached by brining NFC
enabled devices nearby to each other. The maximum distance is limited to a maximum of
10 cm, in order to avoid the abuse or the spying out of data.

Thanks to the energy-efficient and up to 424 kbit/s fast secure connections, NFC is suitable,
for example, for the following applications:

• Mobile payment: The mobile device is used like a contact-less credit card. The
personal identification number (PIN) can be entered directly on the device.

• Mobile ticketing: The ticket data or boarding pass information can be stored digitally
signed on the device.

• Identification and authorization: ID cards and key cards features can be directly
integrated into the devices.

• Data and information sharing: Exchange files or contact data by touching another
mobile device or get product information by tapping passive NFC tags.

The passive NFC mode also enables to use some of these features, even when the phone is
switched off or has dead batteries. Powered from the RF energy from the active part, the
data written during runtime on the NFC chip can be read out.

For a realization in the virtual environment, the active and the passive mode are considered
here. Since the range is limited in NFC respective RFID, it should be possible to set the
maximum RF range for each device in the simulation. In addition to the limited range,
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the systems often exhibit a main radiation direction. This can, for example, be simulated
by only allowing communication, when the partner is in front of the device. This direction
could be implemented as a parameter for the virtual sensor, supporting the following
directions: omni-directional, only ±x, ±x or ±z. Another reasonable parameter is the
mode of operation: active or passive. This is needed to ensure, that at least one of the
communication partners is in active mode. The communication can be realized by ROS
topics. Each devices could have an incoming and an outgoing topic, that are automatically
connected via some proxy node, when two devices are within their defined communication
ranges. Another topic could be used for notification when a new communication partner
was detected.

A possible NFC communication flow for exchanging contact details could look like this:

• The active NFC device A and the active NFC device B can see each other in their
defined RF range and direction.

• Both devices send a message on their notification topic, e.g.

– /NFC A/notification {name: B, type: active, status: connected}

– /NFC B/notification {name: A, type: active, status: connected}

• A background node for the device A sends out the contact details simultaneously to
its outgoing topic and to the partners incoming topic. This enables easy traceability
and debugging:

– /NFC A/outgoing {receiver: B, data: BEGIN:VCARD\n...\n
END:VCARD}

– /NFC B/incoming {sender: A, data: BEGIN:VCARD\n...\nEND:VCARD}

• The device B acknowledges the reception:

– /NFC B/outgoing {receiver: A, data: OK}

– /NFC A/incoming {sender: B, data: OK}

• When the devices are again outside their RF ranges a notification is again automat-
ically sent:

– /NFC A/notification {name: B, type: active, status:

disconnected}

– /NFC B/notification {name: A, type: active, status:

disconnected}
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3.3.9 Time Measurement

For many applications the time is an important factor. It is, for example, used to generate
expiring user credentials, to trigger scheduled tasks or to stamp incoming messages or cre-
ated files. Modern mobile operating systems offer several different solutions to synchronize
the device’s clock with reference clocks. The most popular clock synchronization solution
for data connections is the Network Time Protocol (NTP) which is based on a client-server
system. Mobile phones with CDMA/UMTS support can synchronize their clocks with the
mobile network. Accurate time synchronization can further be reached via GPS.

Virtual clocks in Gazebo should run with simulation time which is for most simulations
slower than the real time. The simulation time is published automatically to the /clock

topic when the global parameter /use sim time is set to true. A sample output of the
/clock topic can be seen in Console output 3.3.2. The clock controller for the different
devices could use the messages from this topic as reference, but add a slight random drift
value to it. The virtual clock should, in addition to publishing its current time, also allow
to be set by an external instance. This could be realized via a ROS service.

Console output 3.3.2 Console output of the simulation clock topic.

# rostopic echo /clock

clock:

secs: 9

nsecs: 46000000

---

clock:

secs: 9

nsecs: 47000000

---

clock:

secs: 9

nsecs: 48000000

3.3.10 Battery Status

For mobile devices it is very important to keep an eye on the current battery status, since
there is nothing more annoying than an empty battery when one needs to use the device.
For that reason, there are some prediction algorithms that try to predict the battery
life-time for the average usage profile [51]. In order to be able to develop battery-aware
applications, the battery behavior should also be simulated for the virtual mobile device.

A battery can already be simulated in Gazebo using the GazeboRosBattery plugin. It
was originally developed for the PR2 robot, but can also be used for other scenarios. The
battery plugin allows to set a full capacity, e.g. 1500 mAh for the Google Nexus S. A sample
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URDF description can be found in Code snippet 3.3.4. The parameters are explained in
Table 4.1.

Code snippet 3.3.4 URDF description for the RosPowerMonitor controller.
<controller:gazebo_ros_power_monitor

name="gazebo_ros_power_monitor_controller"

plugin="libgazebo_ros_power_monitor.so">

<alwaysOn>true</alwaysOn>

<updateRate>1.0</updateRate>

<timeout>5</timeout>

<interface:audio name="power_monitor_dummy_interface" />

<robotNamespace>/mobile_device</robotNamespace>

<powerStateTopic>power_state</powerStateTopic>

<powerStateRate>10.0</powerStateRate>

<fullChargeCapacity>1.400</fullChargeCapacity>

<dischargeRate>0.100</dischargeRate>

<chargeRate>5</chargeRate>

<dischargeVoltage>4.95</dischargeVoltage>

<chargeVoltage>5.05</chargeVoltage>

</controller:gazebo_ros_power_monitor>

Parameter Sample value Description
robotNamespace mobile device The ROS namespace of the device the bat-

tery is simulated for.
powerStateTopic power state The battery plugin publishes

pr2 msgs/PowerState messages to this
topic.

powerStateRate 10 Publishing rate for the power state messages.
fullChargeCapacity 1.400 Capacity of the fully charged battery in Ah.

dischargeRate 0.100 Power drawn from the battery during dis-
charge mode in W.

chargeRate 5 Charging power in W.
dischargeVoltage 4.95 Voltage during discharge in V.
chargeVoltage 5.05 Voltage during charge in V.

Table 3.1: Important URDF parameters for the gazebo ros power monitor plugin. The
sample values should represent a common mobile phone.

This model assumes a static discharge rate which does not hold for most electronic devices.
For example, when the display of a mobile device, which needs a lot of power, is switched
on, the battery is drained much faster than when it is switched off. This effect could be
modeled by measuring the power of the different components of a real mobile device. This
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can easily be done with freely available power monitors or a built-in power analyzer. A
table could be used to store this values and to calculate the actual discharge rate depending
on the currently used components.

3.3.11 Temperature, Air Pressure and Humidity

The temperature is one of the most frequently measured quantities in science. It influences
many physical phenomena and chemical reactions. In daily life it is used, for example, to
determine how warm should one dress or to control the heating and cooling. A thermome-
ter in a mobile device can, for instance, be used to derive contextual information. The
measured temperature can be a supportive indicator for location determination. During
the summer and the winter periods, the outside temperature is often significantly differ-
ent to the room temperature. The air pressure was already mentioned in the altimeter’s
description. The value, measured by a barometer, can further be used for the detection
of opening and closing of doors or windows in sealed rooms. Hygrometers are used for
measuring the humidity. Together with the air pressure and the temperature, it can, for
example, be used for weather interpretation and forecast.

The values for these sensors cannot be derived directly in the virtual environment, since
there is no atmospheric or weather model in the simulation. For this reason, an external
unit is designated in the concept which was introduced in Chapter 2. This unit can
be used to generate reasonable values automatically or to play back previously recorded
temperature, air pressure and humidity data.

3.3.12 Ambient Light Sensor

Ambient light sensors are, for example, used to safe battery life or to enhance display
visibility by adjusting the display brightness with respect to the current ambient light.
These devices are typically realized by photo-transistors or photo-diodes, that detect the
arriving light value. Using several such sensors together with different light sensitivity
characteristics or putting filters in front of the light receivers allows to determine the
current type of light the phone is exposed to. This could for example be used to determine
whether the user is outside or inside. By measuring flicker frequencies, it could eventually
also be used to detect when the user sits in front of a TV or another display.

The most realistic realization of a light sensor in Gazebo can be reached by modifying the
camera plugin. A shader can be used to create a texture with the detected light intensity.
The color can be analyzed in order to determine the color composition of the detected light.
By assigning different ambient, diffuse or specular colors for the light sources, different light
types can be modeled. For example, light with red parts could be used for sun light or
light with blue parts could be used for the interior lightning.
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3.3.13 Camera

Since several years the majority of mobile devices are equipped with at least one camera.
Although the cameras are in most cases very simple components with fixed focus lenses and
small image sensors, that limit the performance in poor light conditions, the low cost and
the compactness have made them to indispensable parts of the mobile devices. Since the low
cost is a key factor, the most image sensors are complementary metal-oxid-semiconductor
(CMOS) active pixel sensors which are less expensive than the analog charged-coupled
device (CCD) sensors. They consist of a matrix of photo sensors which are connected to
circuitry that converts the received light energy to a voltage and afterwards to a composed
digital image signal. In order to get a color image, a color separation mechanism is applied.
Today’s most common mechanism is the Bayer pattern. It is a color filter array that passes
red, green and blue light only to selected pixel sensors. A schematic illustration is depicted
in Figure 3.7. The missing color pixels are interpolated by software using a demosaicing
algorithm.

Figure 3.7: A color filter array (Bayer pattern) on a pixel sensor.

The camera in the mobile device is today not only used for capturing still images or videos.
Augmented reality (AR) applications access the video stream from the camera and allow
to overlay the real world images with artificial information. This can be used for task
support [52], enriched navigation [53] or interactive sightseeing [54]. Front cameras enable,
for example, video telephony with face-to-face communication.

Another type of camera, which is not yet built into any mobile device, is the infrared (IR)
camera. It operates in wavelengths from 3500−−14000 nm, instead of the 450−−750 nm
range of the visible light. This allows to detect the black body radiation of objects, which
is directly related to their temperatures. IR cameras can be used for night vision, energy
auditing of buildings and other insulated objects, firefighting operations or flame detectors.
It can be also used for contact-less temperature measurement.

Some kind of virtual camera is already available in every 3D framework. They are primarily
used to render the viewport for the user window. Most frameworks support more than one
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camera instance. This allows to have multiple independent virtual cameras with distinct
configurations and perspectives. In the following the basic concept of a virtual camera is
explained.

The basis of a virtual camera is the so called view frustum. It basically describes the
volume of space in the virtual 3D world that is visible to the camera. This is the so called
field of view of the virtual camera. A common frustum shape can be seen in Figure 3.8.
It has the shape of a rectangular pyramid frustum. The camera position C lies at the
apex of the notional completed pyramid. The near and the far frustum planes define the
minimum and the maximum distances at which objects are visible to the camera. The
far plane is often placed “infinitely” far away from the camera in order to get a realistic
image in which all objects are drawn that are in the frustum regardless of their distance
from the camera. The shown right-handed coordinate system defines the so called camera
space or eye space. The camera lies at the origin of the camera space, the x-axis point to
the right and the y-axis points upward. The pointing of the z-axis is defined differently
depending on the 3D library. For OpenGL and thus OGRE 3D, it points to the opposite
that in which the camera points.

z n=−

z f=−
C

x

y

z

far plane

near plane

Figure 3.8: The view frustum is bounded by the near plane at distance n from the camera
C and the far plane at distance f from the camera C. The top, bottom, left
and right planes all pass through the camera position C. Source: [55]

Figure 3.9 shows the projection plane of the camera. It is perpendicular to the camera’s
viewing direction and intersects the left and right frustum planes at x = −1 and x = 1.
The resulting distance e between the camera and the projection plane is called the focal
length. The distance e depends on the so called horizontal field of view angle α formed
between the left and the right frustum plane. The distance e can be calculated for a given



Chapter 3 Virtualization of a Mobile Device 40

x

z

x=1x     1=−

α
2

α
2

e

projection plane

left frustum
plane

right frustum
plane

Figure 3.9: The horizontal field of view angle α formed by the angle between the left and
the right frustum plane. Template: [55]

horizontal field of view angle α:

e =
1

tan
(
α
2

) (3.5)

The calculation of the vertical field of view angle is often performed automatically by the
3D framework in order to get an undistorted image. In general it is not equal to the
horizontal angle, since most displays are not square, but rectangular. For example, an
image with a pixel resolution of 640× 480 has an aspect ratio a of a = width

height
= 640

480
= 0.75.

Thus the projection plane intersects the bottom and the top frustum planes at y = −a and
y = a. The resulting triangle for the vertical field of view angle β is shown in Figure 3.11.
It can be calculated in the following way:

β = 2 tan−1
(a
e

)
(3.6)

A small field of view angle makes the camera “zoom in”, resulting in a telescopic view. A
panorama view or “zoom out” can be reached by increasing the field of view angle.

The perspective projection onto the projection plane is reached by tracing the path from
the camera through every pixel of the projection plane to the next intersection with an
object in the view frustum. Basically the color and texture attributes of this point are
evaluated and copied into the projection plane. A part of a sample scanline is shown in
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Figure 3.10: The vertical field of view angle α formed by the angle between the bottom
and the top frustum plane. Template: [55]
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Figure 3.11: A sample scanline showing the ray casting for the projection. Template: [55]

Figure 3.11. The x-coordinate p on the projection plane corresponds to one point (x, y)
in the view frustum. The relationship of the projection plane coordinates and the camera
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coordinates of the eye space is expressed with the following equation:

p

x
=
−e
z

(3.7)

For the projection of the 3D scene to the 2D screen one gets the following equations, where
x and y represent the pixel coordinates and P is the point which gets projected onto the
screen:

x = − e

Pz
Px y = − e

Pz
Py (3.8)

To obtain a correct perspective projection the view frustum is transformed to the so called
homogeneous clip space. For calculating the respective lightning, shadows and reflections
several interpolation methods are applied. A comprehensive description of the view frus-
tum, projections and 3D computer graphic basics can be found in [55].

For getting a realistic image, the virtual lens system should exhibit a behavior similar to
a real lens system. Some approaches for modeling effects like focus and distortion are
described in [56] and [57].

3.3.14 Microphone

A microphone is a sensor that converts sound into an electrical signal. This is reached
by detecting the pressure waves caused by the sound. In order to detect the vibrations,
most microphones use either a moving coil which is suspended in a magnetic field (dynamic
microphone), or a capacitor where one of the capacitor elements is a lightweight, conductive
foil (condenser microphones).

Almost every mobile device has at least one microphone today. Besides their original
intended use for audio communication, the microphone of a mobile device is today used for
audio recording, for spectrum analyzing or for (very controversial) eavesdropping. Audio
is also an important context provider. It can, for example, be used to detect the count
of present people or to identify talking people by voice identification. By analyzing the
ambient sounds, information about the current location and situation can be derived.
For example, the ambient audio can be used to recognize ongoing human actions [58].
Equipping the device with more than one microphone further enables to locate the audio
sources. There are even sound locating approaches that work with only one microphone
[59].

Due to the large importance of audio, it should also be simulated in the virtual environment.
Gazebo has a built-in audio interface. The free Open Audio Library (OpenAL) [60] is used
for generating the three dimensional positional audio. The main elements of the library are
buffers, sources and listeners. The buffers provide the audio signal for the sources which
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represent audio emitting points in the 3D space. The listener represents the 3D position
where the audio is heard. The audio rendering is done independently for every listener in
the scene. A listener corresponds to the microphone in the virtual scene.

The main OpenAL features are:

• 3D positioning with fully customizable distance attenuation.

• Different sound gains for every source.

• Multi-channel audio.

• Directional sound.

• Doppler effect: final output is dependent of distance, velocity and direction of the
listener.

A sample Gazebo XML description for the audio controller is given in Code snippet 3.3.5.
It shows an audio controller that plays the sound from the test.mp3 file one time. In the
current implementation, there is only a single listener in the simulation which is bound to
the spectator’s position. This has to be extended before several independent listeners can
be modeled in the simulation. Additionally, there is not yet a ROS interface to the Gazebo
audio controller, but by using the ROS interface for the camera as template, it should be
implementable without excessive effort.

Code snippet 3.3.5 Gazebo XML description for the audio controller.
<controller:audio name="audio_controller_1">

<pitch>1.0</pitch>

<gain>1.0</gain>

<loop>false</loop>

<mp3>test.mp3</mp3>

<interface:audio name="audio_iface_1"/>

</controller:audio>

3.3.15 Further internal and external sensors

There are, of course, uncountable other sensors available on the market that could also be
interesting for mobile device. For instance, radiation or gas sensors could be implemented
in mobile device and warn the user from hazardous substances or places.

Mood sensor

Another important context is the user’s mood. There are several medical ways to measure
the arousal of a human. A well understood technical method is to measure the galvanic
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Figure 3.12: The AffectPhone measures the galvanic skin response (GSR) of the user for
determining his emotional state. Source: [61]

skin response (GSR) or, to use the medically preferred term, the electrodermal response
(EDR) [62]. The response can be obtained by attaching two electrons to the person’s skin
and metering its’ resistance. This technique has proven to be very reliable [63] and is for
example also used for lie detector. The theoretical background is the following: the more
relaxed a person is, the dryer his skin will be. This will lead to a high resistance. Low
resistance is metered when a person is under stress and thus his hand begins to sweat.
The so called AffectPhone [61] uses this technique to detect the user’s emotional state.
Figure 3.12 shows the the AffectPhone with the attached electrons, that allow measuring
the GSR.

This kind of sensor can not yet be directly implemented in the virtual device. But as
soon as there is a human model available, that can handle the device, an interface can
be determined that allows to read out the mood of the person and translates this to
a corresponding resistance. Possible translatable states could be: nervous, happy, sad,
caring, angry, relaxed, clearheaded, fatigued or activated [63].

Linking of External Sensors

There are a number of external sensors that can be connected with mobile phones. Common
standards for their connection to the mobile devices are, for example, Bluetooth or ANT+.
Examples for those sensors are headsets, heart rate or pulse monitors or fitness equipment
data sensors.

Since the virtual device does not distinguish between internal and external sensors, these
external sensors can also be connected to the device simulator via ROS topics. For mod-
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eling the external character it should be possible to define an out of reach distance for
the simulation. Further the external sensors should be unavailable when the respective
connection is switched off at the mobile phone. For example, a Bluetooth devices should
only be able to send data to the mobile phone, when the device’s Bluetooth adapter is
active.

3.4 Virtual Output Devices

The output devices of a mobile device are mainly used to inform and entertain the user.
In the following Subsections the most common output devices are specified.

3.4.1 LEDs, displays and projectors

Mobile devices are equipped with several visual output devices. Those are, for example,
light emitting diodes (LEDs), displays and – in the future – also projectors.

The display is the main output and interaction element. The most common kind of screen
used on mobile devices is the thin film transistor liquid crystal display (TFT-LCD). In
simplified terms, the LCD is working like a window blind for each pixel. The light from
the external back-light can only pass the LCD when the liquid crystals in each pixel cell
are arranged in a specific direction. The arrangement is achieved through an electric
field which is controlled by the thin film transistor circuitry. The active matrix organic
light emitting diode (AMOLED) is another screen technology which is used for mobile
devices. Unlike LCD screens, AMOLED displays do not need a back-light, since the used
organic light emitting diodes (OLDEs) can emit light by themselves. This allows to create
thinner and lighter screens that offer a deep black level. For dark images with high gray
levels an AMOLED display has an up to 60% lower power consumption than LCD [64].
Not necessary depending on the technology, the screens differ in many aspects like size,
resolution, brightness, color brilliance and visibility angle.

In many cases light emitting diodes (LEDs) are embedded in the mobile device’s body.
Due to the large power consumption of the screen, they are often used for visual status
indication and visual event notification. For example, notifying the user of an arrived e-
mail by turning on the screen would massively drain the battery. Using a flashing LED
instead saves much energy, but has the same effect, when the user knows the meaning of it.
In order to offer several distinguishable notifications, multicolor LEDs are used. Embedded
infrared LEDs allow to use a mobile device as a remote control unit for many commercial
products like common multi-media equipment.

Another visual output device for mobile devices is the video projector. First cellphones
with embedded pico projectors are already available on the market. Due to the big advances
of the projector technology, the pico projectors reach images sizes and resolutions that are
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not only sufficient for sharing images and videos with friends, but also for giving on-the-go
business presentations. The study in [? ] revealed that a mobile phone with projector can
enhance the working efficiency. The results in [? ] shows that people want to use this kind
of display possibility.

The simulation of screens in the virtual environment can be reached by manipulating the
textures of objects. This allows to create a screen out of almost every object in the virtual
environment. By converting the image, that should be displayed, to the specified resolution
before it is passed to the texture buffer, the resolution of the display can be modeled.
The self-illumination of a screen can be modeled by using lightning techniques. Further
information about the implementation of a virtual display can be found in Section 4.3.

A projector can be realized by creating some kind of overlay texture which is applied onto
the objects that are hit by the projection rays. An example of a projector for ROS/Gazebo
is already available. The Gazebo plugin gazebo ros projector is able to project a filtered tex-
ture onto objects into the simulation. The calculation of the projected areas on the objects
is done by applying a frustum model. Instead of the camera’s view, the frustum describes
in that case the projection volume. This allows to define the field of view (FOV) and
the near and the far clip planes. A sample URDF description for the gazebo ros projector
controller is depicted in Code snippet 3.4.1. This implementation can be used as basis for
a virtual video projector. The main thing, that has to be added, is the possibility to feed
the projector with images via a ROS topic.

Code snippet 3.4.1 Gazebo URDF description for the projector controller.
<controller:gazebo_ros_projector name="projector_controller"

plugin="libgazebo_ros_projector.so">

<alwaysOn>true</alwaysOn>

<updateRate>15.0</updateRate>

<textureName>projection_pattern_high_res_red.png</textureName>

<bodyName>projector_base_link</bodyName>

<filterTextureName>projection_pattern_filter.png</filterTextureName>

<textureTopicName>projector_controller/image</textureTopicName>

<projectorTopicName>projector_controller/projector</projectorTopicName>

<fov>${M_PI/4}</fov>

<nearClipDist>0.4</nearClipDist>

<farClipDist>10</farClipDist>

</controller:gazebo_ros_projector>

3.4.2 Speaker

The speaker is another important output device. It is the counterpart of the microphone
which is described in Section 3.3.14. Besides enabling to hear each other during audio
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communication, speakers are also used for informing the user of incoming calls, messages
and other events and for giving back multimedia material.

The modeling of the audio system in Gazebo was already addressed by the audio sensor
description in Section 3.3.14. A speaker corresponds to an audio source in this implemen-
tation. The user in front of the simulation window can hear the emitted sound from the
current position of the spectator view in Gazebo.

3.4.3 Micro-sized Vibration Motors

Micro-sized vibration motors are integrated into many mobile devices. They are mainly
used to inform the user silently or to give haptic feedback during the interaction with the
device. For example, most mobile phones offer a vibration alarm for incoming calls and
messages or calendar events. The tactile feedback, for instance, is used to inform the when
a key on a touch keyboard was successfully pressed, since there is no tangible pressure
point like on real keyboards.

For simulating the effect of the vibration motor, a little force can be applied on the sim-
ulated devices. In Gazebo this can be reached by using the available gazebo ros force
plugin. This plugin allows to bind a force controller to a body. By publishing a geome-
try msgs/Wrench to the defined wrench control topic, a force can be applied to body. For
not accelerating the body in a single direction, one could choose a diagonal force direction
that alternates every few milliseconds. A sample URDF description is depicted in Code
snippet 3.4.2.

Code snippet 3.4.2 Gazebo URDF description for the gazebo ros force controller.
<controller:ros_force name="plug_force_controller" plugin="libros_force.so">

<alwaysOn>true</alwaysOn>

<updateRate>100.0</updateRate>

<bodyName>mobile_base_link</bodyName>

<topicName>/mobile_device/force</topicName>

<interface:position name="mobile_device_force_iface"/>

</controller:ros_force>

3.4.4 Thermal displays

Another possibility to give feedback to the user are thermal displays [65], that can, for
example, change the temperature of the device or at least some parts of it. This is especially
of interest during calls, when a user holds the device in his hand. By cooling or heating
the back of the device, the user can be informed of at least two different events. The
sensitive palm can easily recognize these thermal changes. The AffectPhone, which was
introduced in Section 3.3.15, is for example equipped with a Peltier module which can be
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heated or cooled. In that implementation, a user can feel changes in the emotional state
of the person he is conversing. When the arousal of the other person increases, the device
gets warmer. A decreasing arousal of the other user results in a cooler temperature. This
technique allows to extend the verbal communication with a non-verbal component, which
is communicated without interfering the user’s sight or hearing.

Implementing this feature in a simulated device is not that simple. Assuming a simulated
person is holding the device in his hand, a interface could be defined, that makes the person
feel a temperature change on his palm. A method for visualizing the thermal unit’s state
is the use of different colors. When the unit would be heated, the back of the device could
get red. Cooling could lead to a blue coloring.

3.4.5 Other output devices

There are, of course, many other output devices, that could be implemented in the vir-
tual mobile device. An example for a somewhat unusual output device is the a Braille
display which enables the use of the mobile device for visually impaired and blind people.
Samsung’s “Touch Messenger” and the conceptual cellphone B-Touch [66] are examples of
mobile devices that are equipped with a Braille display.

Besides the described internal output devices, there are also external output devices. These
can be realized similar to the external sensors described in Section 3.3.15. Example of
external output devices are headsets



Chapter 4

Implementation of a Virtual Video
System in Gazebo

In this Chapter, a virtual video system for the 3D simulator Gazebo is prototypically
realized. The system supports the acquisition of an image stream from a virtual camera
and the rendering of images to a virtual display. In Section 4.4 the implementation of two
applications is described, that allow to feed images from external sources to the virtual
displays.

4.1 Camera in Gazebo

Virtual cameras are already available in ROS/Gazebo through the gazebo ros camera plu-
gin. It supports various parameters that can directly be set in the URDF description.
Code snippet 4.1.1 shows an example URDF description. The size of the requested image
is defined by editing the <imageSize>width height</imageSize> in the sensor section.
An overview of the ROS specific parameters of the controller is given in Table 4.1.

Besides the raw image, which is published as sensor msgs/Image, the virtual camera node
also publishes the camera info (sensor msgs/CameraInfo) as it is done by real camera de-
vices. The camera info holds the image size and data about the distortion model with the
corresponding distortion parameters. The given distortion parameters do not have any ef-
fect yet on the image itself, but an automatic distortion based on the parameters is planed
to be added. In the most recent SVN version, the virtual camera sensor can also be used
as a depth sensor. In this mode, the camera delivers an additional sensor msgs/PointCloud
message. The update rate (frames per second) and the horizontal field of view can be set
via ROS topics that are explained at the end of this Section.

The gazebo ros camera plugin is realized using an Ogre::Camera instance which is created
and basically configured using the Gazebo built-in wrapper Gazebo::MonoCameraSensor.
The OGRE camera represents a viewport from which the scene is rendered. It is configured
to use the perspective projection mode with full texture support. A frustum model, which

49
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is explained in Section 3.3.13, is used to calculate the visible area and the perspective
projection. The horizontal field of view can be set via the /camera/set hfov topic during
runtime. The vertical field of view is calculated automatically based on the aspect ratio of
the requested image size.

Code snippet 4.1.1 Sample URDF snippet for a virtual camera.
<gazebo reference="mobile_camera_unit">

<sensor:camera name="camera_sensor">

<imageSize>480 800</imageSize>

<controller:gazebo_ros_camera name="controller-name"

plugin="libgazebo_ros_camera.so">

<alwaysOn>true</alwaysOn>

<imageTopicName>/mobile_phone/image_raw</imageTopicName>

<cameraInfoTopicName>/mobile_phone/camera_info</cameraInfoTopicName>

<frameName>mobile_camera_unit</frameName>

</controller:gazebo_ros_camera>

</sensor:camera>

</gazebo>

The virtual camera sensor can be bound to any link of a model. It points by default from
the origin of the link in the +x direction. For the mobile device model, the camera link
mobile camera unit is rotated by −90◦ in pitch to get the camera pointing in −z direction.
The complete URDF description of the mobile device can be found in Appendix A. The
model is part of the sim camera package.

/camera/image raw Publisher
The raw camera image from the virtual device.
Message: sensor msgs/Image

/camera/camera info Publisher
The camera’s calibration data and information about the image (size, encoding, ...). This is
published synchronously with every image frame.
Message: sensor msgs/CameraInfo

/camera/points Publisher
Depth data seen by the camera as point cloud. Only available in the most recent SVN version.
Message: sensor msgs/PointCloud
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Parameter Sample value Description
robotNamespace mobile device The ROS namespace of the device the

camera is simulated for.
imageTopicName image raw The ROS topic where the image mes-

sages are published.
cameraInfoTopicName camera info The ROS topic where the camera info

messages are published.
pointCloudTopicName points The ROS topic where a point cloud

(depth data) is published. Only avail-
able in newest SVN version.

frameName mobile camera unit The name of the link to which the cam-
era is bound.

Cx 0 Principal point x-coordinate. Set to 0
for automatic calculation.

Cy 0 Principal point y-coordinate. Set to 0
for automatic calculation.

focal length 0 Focal length. Set to 0 for au-
tomatic calculation. focal length =
image width (px) / (2 tan hvof (radian)).

distortion k1 0 First coefficient of radial distortion. No
effect yet.

distortion k2 0 Second coefficient of radial distortion.
No effect yet.

distortion k3 0 Third coefficient of radial distortion.
No effect yet.

distortion t1 0 First coefficient of tangential distor-
tion. No effect yet.

distortion t2 0 Second coefficient of tangential distor-
tion. No effect yet.

Table 4.1: URDF parameters for the gazebo ros camera plugin. The sample values rep-
resent a common mobile phone.



Chapter 4 Implementation of a Virtual Video System in Gazebo 52

/camera/set hfov Subscriber
Set the horizontal field of view in radian. The vertical field of view is calculated automatically
based on the aspect ratio of the requested image size. Values of 90◦ and more result in a wide-angle
view. Low values (e.g. 30◦) result in a telescopic kind of view. Default values are 45◦ to 60◦.
Message: std msgs/Float64

/camera/set update rate Subscriber
Can be used to set the frame rate of the camera.
Message: std msgs/Float64

4.2 Usage Example for the Virtual Camera

Another realized implementation example for virtual camera is the flycam which is also
part of the sim camera ROS package in the simvid stack. It can be used to navigate freely
through a Gazebo world using a 3D joystick. For controlling the camera, the so called
camera move node was created. It allows intuitive control of Gazebo objects. Table 4.2
shows the available parameters.

Parameter Default value Description
joy topic /spacenav/joy The ROS topic where the joystick mes-

sages (joy/Joy) are read from.
model name flycam The name of the Gazebo model which

should be controlled.
angular scaler 100.0 The angular scaler allows to scale the

speed for rotations relative to the in-
coming joystick values.

linear scaler 100.0 The linear scaler allows to scale the
speed for translations relative to the in-
coming joystick values.

Table 4.2: URDF parameters for the camera move node.

When the node is started, it subscribes to the specified joystick topic joy topic. These
messages are automatically generated by the respective joystick nodes. Whenever a joystick
message with values unequal to zero arrive, the current model pose of the specified model
model name is requested from Gazebo via the /gazebo/get model state service. For an
intuitive, first person like view, the camera object should be moved relative to its current
position and orientation and not in world coordinates. This is reached by performing a
coordinate transformation using Bullet Physics Library [67] functions in the following way:
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1. The received joystick translation values are scaled by the linear scaler. The angular
values are given in Euler coordinates and are also directly scaled by the angular
scaler.

2. The translation and the rotation are combined to the btTransform movement.

3. The current world pose from the /gazebo/get model state service is transformed to
the btTransform pose in. The rotation of the pose is given as a quaternion and can
directly be used.

4. The new world pose btTransform pose out after the movement is calculated:
pose out = pose in * movement.

The result of the calculation is used to set the new pose of the object. It can be set via
the Gazebo service /gazebo/get model state. Due to the fast publishing rate of the joystick
and the small movement values it is not visible to the eye, that the model pose is jumping.
The camera move node can be used with every Gazebo object. Since the pose is updated
every few milliseconds, the controlled objects can fly in the air or move through wall even
if they have turned on gravity or collision boxes.

Figure 4.1: The 3Dconnexion SpaceNavigator offers six degrees of freedom. Source: [68]

The flycam was mainly tested with the 3D mouse 3Dconnexion SpaceNavigator [68] which
is depicted in Figure 4.1. It allows the control of all six degrees of freedom. The available
ROS package spacenav node allows to use it like a normal joystick in ROS. Before it can
be used the spacenavd, which is part of the spacenav ROS package, has to be started.
This can, for example, be done in the following way:

sudo ‘rospack find spacenav‘/spacenav_svn/spacenavd/spacenavd
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4.3 Video Texture in Gazebo

As mentioned in Section 3.4.1, virtual displays can be realized by dynamic textures. The
implementation of such a dynamic texture for Gazebo is described in this Section. The
realization was done by creating the Gazebo plugin gazebo video plugin. It is part of
the textvid stack.

Before the functionality of this plugin is described in detail, a short examination of the
texture handling in ROS/Gazebo respective OGRE is reasonable. For coloring or texturing
a mesh in Gazebo, so called materials are used. These materials are defined in material
scripts which can reside inside the Media/materials/scripts folder in any ROS package.
Gazebo automatically loads the defined materials at startup, when the path is exported in
the manifest.xml of the package. A sample export entry is shown in Code snippet 4.3.1.

Code snippet 4.3.1 This export entry in the manifest.xml makes Gazebo load all
material scripts that reside in the Media/materials/scripts subfolder.
<export>

<gazebo gazebo_media_path="${prefix}" />

</export>

The default file extension of a material script is .material. In a material script several
materials can be defined. Each material is made up of at least one technique which
describes the visual effects for the rendering of the material. A technique is usually made
up of one or more passes. A pass describes one complete render procedure of the material.
By defining several passes, composite effects can be reached. In a pass the color, lightning
effects and texture units can be defined. The image files specified for the textures are
searched automatically in the Media/materials/textures folder. A sample script file is
given in Code snippet 4.3.2. An overview of the parameters can be found in the OGRE
Manual [69].
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Code snippet 4.3.2 A sample OGRE material script. Source: [69]

// This is a comment

material walls/funkywall1

{

// first, preferred technique

technique

{

// first pass

pass

{

ambient 0.5 0.5 0.5

diffuse 1.0 1.0 1.0

// Texture unit 0

texture_unit

{

texture wibbly.jpg

scroll_anim 0.1 0.0

wave_xform scale sine 0.0 0.7 0.0 1.0

}

// Texture unit 1 (this is a multitexture pass)

texture_unit

{

texture wobbly.png

rotate_anim 0.25

colour_op add

}

}

}

// Second technique, can be used as a fallback or LOD level

technique

{

// .. and so on

}

}

A defined material can be assigned to a Gazebo object by adding the ¡material¿ tag.

For that reason, the realization of the virtual display is based on material manipulations.
Whenever a gazebo ros video controller is loaded, a new material with a unique random
name is created and assigned to the body that will be the virtual display. In the current im-
plementation, the dynamic material is assigned to all visual faces of the body. That means,
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that the complete surface of the object is covered by the same virtual display. Since most
displays are only visible from one side, this is no problem. As soon as the material is created
a single technique with a single pass is added to it. After this step, the dynamic texture
has to be created. Similar to the material, it gets a random unique name. It is configured
to use the BGRA pixel format and the TU DYNAMIC WRITE ONLY DISCARDABLE op-
tion is set in order to reserve a buffer that is optimized for dynamic, frequently updated
textures. After the initialization of the texture it is added to the previously created pass
of the material. To enhance the visibility of the material, the lightning is disabled in the
pass. This leads to brighter images on the virtual screen in dark environments.

Code snippet 4.3.3 Sample URDF snippet for a virtual display.
<gazebo>

<controller:gazebo_ros_video name="gazebo_ros_video_controller"

plugin="libgazebo_ros_video.so">

<bodyName>mobile_display</bodyName>

<imageTopic>/mobile_device/image_in</imageTopic>

<imageLoad>/mobile_device/load_file</imageLoad>

</controller:gazebo_ros_video>

</gazebo>

Code snippet 4.3.3 is a sample URDF description for the implemented virtual display. It
can be configured by the following three parameters:

bodyName is used to define the name of the link to which the dynamic texture will be
bound to. Only links of the model, for which the virtual display is defined, are
considered. This allows to have the same link name in different models. It is a
mandatory parameter and the plugin will thrown an error when the specified link
name cannot be found for the model.

imageTopic can be used to define the topic name of the video texture’s “video in”.
The video texture will subscribe to this image topic and display the images that
are published on this topic. The default value for the imageTopic parameter is
/monitor/image in.

imageLoad specifies the topic of the video texture’s image file loading interface. When a
std msgs/String message with a path to an existing image file is published to this
topic, the video texture tries to load and display the local image file. The default
value of this parameter is /monitor/load file.

The details of the mentioned topics are explained at the end of this Section.

The video texture can either display an image which is received on the subscribed ROS
image topic imageTopic, or it can load and display a local image file which is triggered
by publishing the path to the image file as a std msgs/String ROS message to the specified
imageLoad topic. Both capabilities can be used at the same time. The last received image
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or image loaded from the given path is displayed until a new image or file path is received.
In order to load the image to the texture buffer, its data is converted to an Ogre::Image

by using an appropriate Ogre::PixelFormat. The valid pixel formats for received ROS
image messages are given in Table 4.3. It also shows the appropriate Ogre pixel format for
loading the data to an Ogre image. For copying the image data from the incoming ROS
image message to the Ogre image that is written to the texture buffer, it is required to set
a global lock. The lock prevents that the buffer of the Ogre image is accessed by multiple
threads. It further ensures that only one output image can be set at once. When a path is
received on the imageLoad topic, it is checked whether the file exists on the local system or
not. When the file exists and the file type is supported by Ogre, it can directly be loaded
to an Ogre::Image. The image handling of Ogre 3D is realized with the FreeImage library
[70]. It supports all common file formats like for example PNG, BMP, GIF, JPEG, TIFF
and many other.

ROS image topic pixel format Ogre pixel format
RGBA8 Ogre::PF BYTE RGB
BGRA8 (OpenCV types: 8UC4, 8SC4) Ogre::PF BYTE RGBA
BGR8 (OpenCV types: 8UC3, 8SC3) Ogre::PF BYTE BGRA
MONO8, Bayer (OpenCV types: 8UC1, 8SC1) Ogre::PF BYTE L

Table 4.3: Supported pixel formats for ROS image messages.

The created Ogre image can not be written directly to the texture buffer of the dynamic
texture. This is due to the different contexts in which the threads are running. The
processing of incoming ROS messages is done in a thread which is running parallel to
the Ogre rendering thread. For this reason, a frame listener is attached to the Ogre
rendering pipeline during the plugin’s initialization. The frame listener is implemented
in the class GazeboRosVideo::DynamicTextureHandler by overriding the methods of the
Ogre::FrameListener class. Table 4.4 shows the frame listener functions that are called
during the rendering of a frame.

ROS image topic pixel format Ogre pixel format

bool frameStarted(const FrameEvent &evt) Called when a frame is about
to begin rendering.

bool frameRenderingQueued(const FrameEvent &evt) Called after all render targets
have had their rendering com-
mands issued, but before ren-
der windows have been asked
to flip their buffers over.

bool frameEnded(const FrameEvent &evt) Called just after a frame has
been rendered.

Table 4.4: Methods of an Ogre::FrameListener. Source: [69]
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For loading the image data from the Ogre image into the texture buffer, the frameStarted
function was chosen. This allows to display a newly received image already in the next
rendered frame. For copying the image data to the texture, the global lock has to be
set again so that the Ogre image cannot be altered during the copying. The image can
be loaded into the texture buffer by calling the void loadImage(const Image &img)

function of the dynamic texture object. The new image is automatically scaled to fit
the texture’s size. The pixel format of the texture is also automatically adjusted to fit the
Ogre image’s pixel format. This procedure only takes place when new image data was set
since the last replacement. During the initialization a blue color is set for the dynamic
texture which is kept until the first image data is set.

/mobile device/load image file Subscriber
Path to an image file on the node PC that should be loaded to the video texture. The image
is automatically scaled to fit the texture’s size. All major image formats are supported. For a
complete list, see http: // freeimage. sourceforge. net/ features. html

Message: std msgs/string

/mobile device/image in Subscriber
This is the “video in” of the video texture. Every image, that is published to this topic is displayed
by the video texture. The image is automatically scaled to fit the texture’s size. It supports the
formats RGB8, RGBA8, BGRA8, BGR8 and MONO8.
Message: sensor msgs/Image

4.4 Feeds for Video Texture

To feed the video texture from different source two image format converters have been
created:

• Remote Frame Buffer (RFB) node for converting VNC images to a ROS image topic.

• PointCloud2 to ROS image topic converter – kinect4skype.

4.4.1 Remote Frame Buffer node – vnc image client

The vnc image client package allows to connect ROS to a VNC server. It currently
supports publishing the image data of the remote frame buffer to a ROS image topic. This
can, for instance, be used to display the content of a real computer monitor to a virtual
monitor in the simulation. In Chapter 5 it is used to display the content of the Android
emulator’s display on the simulated mobile device. The node was realized in Python and is

http://freeimage.sourceforge.net/features.html
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mainly based on the rospy package. Although there is also a pure Python implementation
for a VNC viewer available [71], the ROS node was built using ctypes Python bindings to
the original LibVNCClient [72].

The ctypes wrapper for LibVNCClient, which was automatically generated using the tool
RPythonic, allows to call the functions of the C library directly from Python. The library
itself had also to be patched, in order to support a callback function for newly arrived RFB
data and for passing the VNC server’s password directly as a parameter to the library. By
using different threads for the RFB data acquisition and the ROS image publishing, the
node can work very efficient. A global lock ensures, that the RFB data can be copied safely
in the ROS image publishing thread. The image is published in the RGBA8 format.

The configuration of the vnc image client node is realized through private ROS param-
eters which are described in Table 4.5

Parameter Default value Description
∼image topic /vnc image The name of the topic to which the VNC

image is published.
∼host localhost IP address or hostname of the VNC server.
∼port 5901 Port on which the VNC server is running on.

∼password Password for the VNC server.
∼publish rate 15 Maximum frames per second (fps) limit for

the publisher.

Table 4.5: ROS parameters for the vnc image client node.

When the VNC server is password-protected and no password was given as parameter, the
password can be entered during the connection attempt. This allows to keep the password
private.

/vnc image Publisher
The image acquired from the Remote Frame Buffer (RFB). It has the same dimensions like the
RFB image from the VNC server and is published in the RGBA8 format.
Message: sensor msgs/Image

4.4.2 kinect4skype – a PointCloud2 to Image Topic Converter

The Point Cloud Library (PCL) [73], which is part of the perception pcl stack, is an
important ROS component – at least since the arrival of the Microsoft Kinect sensor.
The pcl tutorials package, which comes with the perception pcl addons stack, con-
tains several visualization tools, tutorials and demos. One of these demos is the point-
cloud online viewer node. This node is an online rendering tool for PointCloud2 messages.
It is based on the Visualization ToolKit VTK [74].
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For being able to share the rendered point cloud image via Skype and other video confer-
encing tools, the rendered view has to be exported to a ROS image topic which can be
published to the video loopback device by the image sink. In order to achieve this, the
C++ class PCLVisualizer, which is used for visualizing the point cloud, was inherited by
the self created PCLVisualizerImage. By overloading the render function spinOnce(),
the exporting to a ROS image topic could be realized without altering the original library.
The conversion of the render window to a ROS image message is straight forward:

1. A vtkWindowToImageFilter instance is used to convert the render window content
to a VTK image. The input of the filter is set to the render window.

2. A vtkImageExport instance takes over the conversion of the VTK image to a stan-
dard RGB8 image format. The output of the vtkWindowToImageFilter has to be
set as the input of the image exporter.

3. In order to publish the image, an OpenCV image is created from the exported image
data.

4. The OpenCV image is converted to the ROS image message data by using the
cv bridge.

5. And finally the image is published to the specified topic with the help of an
image transport publisher.

The pcl2image node is part of the newly created kinect4skype stack. Figure 4.2 is showing
the render window. The image view in Figure 4.3 displays the ROS image topic published
by the pcl2image node. In Figure 4.7 the output of the pcl2image node is rendered to the
monitor screen in the virtual Cognitive Office.

For a future version of this package, a Skype plugin shall be created that allows to directly
send the point cloud information to another client. A possible realization could be based
on the recently released PCL compression algorithms [75].

4.5 Video Loopback Device

Another aspect of the video toolchain was to create a method for using ROS image messages
outside the ROS. For feeding the video data to other video processing applications, the best
method is to create a local video loopback device that can be accessed and controlled via
a virtual device node /dev/video*. This can be reached by creating a Linux kernel module
which uses the Video4Linux2 (V4L2) API. Video4Linux was created in order to provide
unified access to various video capturing devices, such as TV tuners or USB web cameras
[76]. The standard Linux kernel module vivi (Virtual Video driver) shows a sample
implementation of a virtual video loopback device that is based on V4L2. It is intended to
be a working example code for current V4L2 drivers to facilitate the implementation of new
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Figure 4.2: The render and control window of the pcl2image. It is derived from the point-
cloud online viewer node which comes with the perception pcl addons stack.

Figure 4.3: An image view instance is showing the output of the pcl2image node.

video drivers. Its current implementation acts like a real device but without interfacing
any physical hardware and only displays some color bars with a time counter.

An extended version of the vivi module is the v4l2loopback module. The most recent
development version can be obtained from [77]. It allows to create one or more virtual
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Figure 4.4: The image topic output of the pcl2image is rendered to the video texture on
the virtual monitor of the Cognitive Office.

video character devices that can be written to and read from. It is mainly intended for
the use with GStreamer’s v4l2sink element as writer. It is working with many different
V4L2 compatible readers, but it is for example not working with Skype. During several
tests it revealed that a logical error in the memory-mapped (mmap) implementation leads
to a memory access in an undefined memory region. An error in the implementation of the
vidioc enum framesizes function further caused the reader application to get the wrong
framesize. In addition the vidioc enum frameintervals was missing. This function is
called by the reader for determining the valid frame rate for the available framesizes. In
Figure 4.5 the message flows between the driver and the writer and between the driver and
the reader are given. A general overview of V4L2 driver programming can be found in
[76].

For the aimed use case, it is sufficient that the driver just outputs the image data that
was written to the video loopback device. For that reason, the driver only support one
framesize and one framerate, that correspond to the data from the writer. For meeting
the requirements, the vidioc enum framesizes was changed to output the image size of
the incoming image data. Additionally the vidioc enum frameintervals function was
created, in order to output the configured frame rate. The frame rate can be set by the
image writer during the initialization.

An usage example for this function is for example a tele operation system via Skype.



Chapter 4 Implementation of a Virtual Video System in Gazebo 63

Sender Driver

Get Video Capabilities
VIDIOC_QUERYCAP

Capture, Output, Streaming, Read/Write

Set Video Format
VIDIOC_S_FMT (YUYV, size, ...)

Success / Error

Request Buffers for MMAP
VIDIOC_REQBUFS (Output, MMAP, count)

Assigned numbers of buffers (count)

Get Buffer #i Details
VIDIOC_QUERYBUF (#i)

Buffer #i memory address & length

Queue Buffer #i
VIDIOC_QBUF (#i)

Success / Error

mmap
Buffer #i

Start Image Streaming
VIDIOC_STREAMON

Success / Error

Dequeue a Buffer for Writing
VIDIOC_DQBUF

Dequeued Buffer #a for Writing

Queue Buffer #a
VIDIOC_QBUF (#a)

Success / Error

Write Frame Data
to Buffer #a

Stop Image Streaming
VIDIOC_STREAMOFF

Success / Error

i = 0
for i < count

while data
available

i++

(a) Image sender and driver.

Driver Receiver

Get Video Capabilities
VIDIOC_QUERYCAP

Capture, Output, Streaming, Read/Write

Get available Video
Format / Size / Frame Rate

VIDIOC_ENUM_FMT/VIDIOC_ENUM_FRAMESIZES/
VIDIOC_ENUM_FRAMEINTERVALS

Video Formats (YUYV) / Sizes / Frame rates

Select a Video Format
VIDIOC_S_FMT

Selected Video Format Details

Request Buffers for MMAP
VIDIOC_REQBUFS (Output, MMAP, count)

Assigned numbers of buffers (count)

Get Buffer #i Details
VIDIOC_QUERYBUF (#i)

Buffer #i memory address & length

Queue Buffer #i
VIDIOC_QBUF (#i)

Success / Error

mmap
Buffer #i

Start Image Streaming
VIDIOC_STREAMON

Success / Error

Dequeue a Buffer for Reading
VIDIOC_DQBUF

Dequeued Buffer #a for Writing

Queue Buffer #a
VIDIOC_QBUF (#a)

Success / Error

Read Frame Data
from Buffer #a

Stop Image Streaming
VIDIOC_STREAMOFF

Success / Error

while data
available

i = 0
for i < count

i++

(b) Driver and image receiver.

Figure 4.5: Simplified V4L2 message diagram.
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4.6 Video Loopback Device Writer

In order to publish a ROS image stream to the adapted video loopback device, a v4l2
compatible writer had to be created. For this reason, the image sink node was implemented.
It is part of the simvid stack. It was written from scratch and uses the memory mapping
(mmap). In general, it reads images from a given image topic, converts them to the
specified image size and to the YUYV pixel format and writes them to specified video
device. A parameter overview is given in Table 4.6. The memory mapping is explained
graphically in Figure 4.6.

Parameter Default value Description
device /dev/video0 The video loopback device to which the data

is written.
topic /camera/image raw The image topic from which the images are

read from.
width 640 The image width to which the input images

are converted before output.
height 480 The image height to which the input images

are converted before output.
fps 15 The expected and defined frame rate.

Table 4.6: ROS parameters for the image sink node.

For publishing the image data the YUV2 (YUYV) format was chosen, because it is sup-
ported by almost all video readers. For getting the YUV2 data out of the RGB images,
the following scheme is used:

y0 u0 y1 v0 from r0 g0 b0 r1 g1 b1

y2 u1 y3 v1 from r2 g2 b2 r3 g3 b3

Code snippet 4.6.1 shows the formulas for the converting of RGB to YUV2. For the
final implementation the conversion was changed from a float based solution to an integer
solution. The new conversion code is depicted in Code snippet 4.6.2. This optimization
leads to an about 35% faster color conversion. The values are clipped to the range 0 to
255 after the conversion.

Code snippet 4.6.1 RGB to YUYV conversion with float values.

y0 = (0.257 * r0) + (0.504 * g0) + (0.098 * b0) + 16;

u = -(0.148 * r0) - (0.291 * g0) + (0.439 * b0) + 128;

v = (0.439 * r0) - (0.368 * g0) - (0.071 * b0) + 128;

y1 = (0.257 * r1) + (0.504 * g1) + (0.098 * b1) + 16;
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Figure 4.6: Buffer handling of the v4l2loopback device, seen from the writer’s perspective.
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Code snippet 4.6.2 RGB to YUYV conversion with integer values.

y0 = (( 263 * r0 + 516 * g0 + 100 * b0) >> 10) + 16;

u = ((-151 * r0 - 298 * g0 + 450 * b0) >> 10) + 128;

v = (( 450 * r0 - 377 * g0 - 73 * b0) >> 10) + 128;

y1 = (( 263 * r0 + 516 * g0 + 100 * b0) >> 10) + 16;

/camera/image raw Subscriber
The images from this topic are written to the configured video device.
Message: sensor msgs/Image

Figure 4.7: The image topic output of the kinect4skype rendered to video texture and
simultaneously exported to a video loopback device, which is opened by various
media players.

4.7 A Sample Video Processing Toolchain

On the basis of the implemented video toolchain one can simulate almost every kind of
application, that needs data from a camera and/or produces graphical output for the
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user. For the evaluation, a simple barcode detection was implemented. The detection
was realized with the existing ROS package zbar barcode reader node [78]. The barcode
detection node is based on the open-source software suite zbar [79] which can read barcodes
from different sources, such as video streams or image files. It supports the most common
barcode types including EAN-13, EAN-8, Code 128 and QR Code.

/zbar_barcode_reader_node/mobile_device

QR-Code,http://www.vmi.ei.tum.de

/barcode

/mobile_device/
image_raw

Figure 4.8: The structure of the barcode detection sample.

Figure 4.8 shows the structure of the barcode detection sample. The image from the virtual
camera is processed by the zbar barcode reader node. When the barcode reader node
detects a barcode in the image, it publishes a message with the barcode type and the
barcode data to the /barcode topic.

The Gazebo model of the Cognitive Office was chosen as test environment for the im-
plemented sample. A white “piece of paper” showing a QR Code, which holds the URL
http://vmi.lmt.ei.tum.de, is lying on the writing desk. Figure 4.9 shows the mobile
device filming the QR code on the desk. Simultaneously the scan result is published to the
/barcode topic. The output is depicted in Console output 4.7.1.

Console output 4.7.1 Sample URDF snippet for a virtual camera.

# rostopic echo /barcode

data: QR-Code,http://www.vmi.ei.tum.de

---

http://vmi.lmt.ei.tum.de


Chapter 4 Implementation of a Virtual Video System in Gazebo 68

Figure 4.9: The mobile device scans the QR code.



Chapter 5

Integration of Android Emulator in the
Video Toolchain

In order to simulate mobile applications, that can also run on real devices without modifi-
cations, the Android emulator was integrated in the video toolchain. Several modification
had to be done for “seamless” integration of the emulator system. These modifications are
described in the following sections.

5.1 Adding a ROS Client to Android Camera Service

The major modification had to be done to the camera service of the Android emulator. At
the moment, only a fake camera is supported by the emulator which generates a simple
checkerboard image with a floating square on it for the camera preview and a static jpeg
image for the capture function.

For that reason, a closer look to the Android source was necessary. Already during the
familiarization with the code, a bug was identified that prevented the Camera preview
from being shown in the emulator for Android 2.3 and newer. The bug was already known
and reported first on 12 December 2010 [80].

Created tiny roscpp. A small cpp class, that supports the basic ROS API in order to
subscribe to an image topic.
Depends only in cURL and Berkley sockets.
Features: Creates a “webserver”, performs XML-RPCs, negotiates ROS message format
and handles tcp stream for image data reception.

69
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Figure 5.1: ROS API messages exchange for subscribing to a topic.

Code snippet 5.1.1 Register subscriber with Master.
<?xml version="1.0"?>

<methodCall>

<methodName>registerSubscriber</methodName>

<params>

<param><value>/vmi_ros_android</value></param>

<param><value>/mobile_device/image_raw</value></param>

<param><value>sensor_msgs/Image</value></param>

<param><value>http://10.152.4.221:41106/</value></param>

</params>

</methodCall>



Chapter 5 Integration of Android Emulator in the Video Toolchain 71

Code snippet 5.1.2 Response from Master. Already one publisher available at
http://10.152.4.58:52605/.
<?xml version=’1.0’?>

<methodResponse>

<params>

<param>

<value><array><data>

<value><int>1</int></value>

<value><string>

Subscribed to [/mobile_device/image_raw]

</string></value>

<value><array><data>

<value><string>http://10.152.4.58:52605/</string></value>

</data></array></value>

</data></array></value>

</param>

</params>

</methodResponse>

Code snippet 5.1.3 Master announces a publisher update to subscriber node. Array
contains all active publishers. If last publisher stops sending an empty list is sent.
<?xml version=’1.0’?>

<methodCall>

<methodName>publisherUpdate</methodName>

<params>

<param>

<value><string>/master</string></value>

</param>

<param>

<value><string>/webcam/image_raw</string></value>

</param>

<param>

<value><array><data>

<value><string>http://10.152.4.58:52605/</string></value>

</data></array></value>

</param>

</params>

</methodCall>
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Code snippet 5.1.4 Request the topic from publisher node http://10.152.4.58:52605/.
<?xml version="1.0"?>

<methodCall>

<methodName>requestTopic</methodName>

<params>

<param><value><string>/vmi_ros_android</string></value></param>

<param><value><string>/mobile_device/image_raw</string></value></param>

<param>

<value><array><data>

<value><array><data>

<value><string>TCPROS</string></value>

</data></array></value>

</data></array></value>

</param>

</params>

</methodCall>

Code snippet 5.1.5 Answer from publisher node http://10.152.4.58:52605/. A TCP
data channel is open on 10.152.4.58:52768.
<?xml version=’1.0’?>

<methodResponse>

<params>

<param>

<value><array><data>

<value><int>1</int></value>

<value><string>ready on 10.152.4.58:52768</string></value>

<value><array><data>

<value><string>TCPROS</string></value>

<value><string>10.152.4.58</string></value>

<value><int>52768</int></value>

</data></array></value>

</data></array></value>

</param>

</params>

</methodResponse>

Before the data transmission can start, the message type has to be matched. This is
realized by exchanging data about the message format file. The obligatory fields are
the topic name, the message type, the MD5 sum of the message file and the caller id,
which corresponds to the ROS node name. The other options can be found on http:

//www.ros.org/wiki/ROS/Connection%20Header.

http://www.ros.org/wiki/ROS/Connection%20Header
http://www.ros.org/wiki/ROS/Connection%20Header
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Code snippet 5.1.6 Exchange message format and routing information with
10.152.4.58:52768.

topic=/mobile_device/image_raw

type=sensor_msgs/Image

md5sum=060021388200f6f0f447d0fcd9c64743

callerid=/vmi_ros_android

The publisher node will send his message format file afterwards. When both formats match,
which is ensured through the MD5 sum, the publisher starts sending TCP packets with
the data for the defined format. The data is encoded in the following format:

4-byte length + [4-byte field length + field data]*

The length fields are little-endian integers. The values are encoded similar to the C++
representation of http://www.ros.org/wiki/msg#Fields.

The decoding of a uint16 and a string field can be realized like this (with intermediate
step, to make it more understandable):

Code snippet 5.1.7 Decoding example in C++.
unsigned char * dataptr = message;

uint32_t temp;

uint16_t image_height;

/* Decode uint16 */

memcpy((void *)&temp, dataptr, 4);

dataptr += 4;

// decoded uint16 field

image_height = (uint16_t)temp;

printf("Image Height: %d\n", image_height);

/* Decode string */

// temp is here the length of the string

memcpy((void *)&temp, dataptr, 4);

dataptr += 4;

// allocate memory for the string

unsigned char * encoding = (unsigned char *) malloc((temp + 1)

* sizeof(char));

// add string terminator

encoding[size] = 0x00;

// copy the string to encoding

memcpy(encoding, ptr, temp);

dataptr += temp;

printf("Image Encoding: %s\n", encoding);

http://www.ros.org/wiki/msg#Fields
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Implemented in the Android mediaserver binary.

5.2 Further Modifications to the Android Emulator

Before the ROS binding could be used, another limitation of the Android emulator had
to be bypassed. Due to a the virtual network, in which the Android emulator is running,
no direct network connection can be established by default. Although it is possible to set
up port forwarding for single ports, complicated network address translation (NAT) rules
would be necessary to get the ROS communication working. For this reason, it was decided
to establish a virtual private network (VPN) connection from the Android system directly
to the institute’s network.

In order to get the OpenVPN Android client running, the kernel of the Android emulator
system has to be modified.

Compiled a new kernel for the emulator, that has module support. Compiled tun module
to enable VPN connections. Compiled, installed and configured OpenVPN in the An-
droid system.img. Modified init script automatically loads the module and creates VPN
connection.

The backward video channel to the virtual environment was realized by installing a VNC
server (fast-droidvnc).

5.3 Overview of the Complete Toolchain

An overview of the video toolchain is depicted in Figure 5.3. The virtual camera and the
virtual display are Gazebo plugins.

5.4 A Sample Test Scenario

For testing the incorporation of the modified Android emulator, a test scenario similar
to the one in Section 4.7 was performed. The virtual camera is directly connected with
the camera of the Android emulator. The Barcode scanner application from the Android
market is used for detecting the QR code. Figure 5.4 shows the screen of the mobile device.
It correctly shows the decoded content of the QR code.
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Figure 5.4: The Barcode scanner application shows the information of the detected QR
Code.



Chapter 6

Evaluation of the Implemented System
and Improvement Ideas

In this Chapter the implemented toolchain is evaluated based on first test results. Based on
the results of the review, improvement potentials are identified and concrete enhancement
ideas are given.

6.1 The Virtual Environment – ROS and Gazebo

Before the actual video toolchain is evaluated, a quick view at the simulation framework
is reasonable and necessary. The ROS and the 3D simulator Gazebo have been chosen
for the realization. Especially the already available sensors and source codes for sensor
simulation in Gazebo enabled a fast and solid implementation of the video toolchain.
Predefined ROS messages and packages were used to create reusable modules which are
fully compatible with existing image processing tools. The package system of ROS allowed
to create packages that can be used independently to provide certain functionality without
loading the whole system. For example, the kinect4skype package can be used with any
other image topic subscriber node and the video texture can display images from every other
image topic publishing node. An enormous advantage is the availability of fully featured
virtual environments. The example scenarios given in Section 4.7 and Section 5.4 are based
on the Cognitive Office simulation model. This allows a quick realization of a simulation in
a realistic virtual environment. The sample implementation in Section 4.7 further shows the
advantage of the ROS package system. By using the predefined sensor msgs/Image message
for image transport, the already available barcode detection node zbar barcode reader node
can be used without any modification.

During the creation of the 3D model of a mobile device, minor drawbacks of the 3D simula-
tor Gazebo have been identified. The crashing due to an overflow of the shadow buffer when
using high polygon models was already mentioned in Section 3.1. The suggested solution
for this problem was to disable shadowing. But this is no acceptable solution for creating
a realistic video toolchain that should also evaluate the behavior of algorithms for varying
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lighting. For that reason, the detailed Google Nexus S model could not be used and a sim-
ple boxed based model had to be created. Another problem was the weak support of 3D
mesh files. Although Wavefront OBJ and Collada mesh files are supported by Gazebo and
could be loaded successfully, the models did not look like in the 3D modeling tools. Some
error patterns are described in Section 3.1. Debugging model issues is extremely difficult
or even impossible in Gazebo, since no debug output or error messages are available. Only
deep changes in the source code and a recompilation of the whole Gazebo system could
help identifying this issues. Another weak point of the tool is the low fidelity of the 3D
simulation. Although today’s graphic cards allow fast and realistic rendering, The solid
body simulation with ODE did not reveal any problems, but its persistent movement and
collision calculation slows down the simulation a lot.

But major enhancements for the Gazebo simulator are already planned [81]. These could
eliminate the above mentioned problems. The most interesting technical enhancements for
the next two releases are:

• Visualization enhancements: improvement of shadows and materials.

• Better third-party model support.

• GUI for importing and manipulating models.

• Enhancement of physics engine: replacement of ODE with simpler and faster system.

• Simplification of simulation loading, rewinding, saving and resuming.

An important long term goal is the enhancement of the rendering fidelity to allow more
accurate simulation of vision based systems. But not only technical enhancements are
planned. The following things on the development roadmap could simplify the realization
of the introduced concept:

• Incorporation of a human model.

• Addition of sensors: GPS, Wi-Fi, microphones/speakers, switches and buttons.

• Model creation from real-world sensor data.

• More tutorials and a more detailed documentation.

Especially the addition of the new sensors and the incorporation of a human model would be
very useful for the realization. Since the incorporation of the new sensor device is planned
for the next but one release of ROS, the ideas of the simulation concept, introduced in
Chapter 3, could be used as basis for this work.

Looking at the planed enhancements and the recent work in the code repositories shows,
that Gazebo is on the move to get even more powerful. With over 100 public, open source
repositories, the ROS is enhanced and growing every day. This allows the conclusion that
the decision to use ROS and Gazebo for the realization of the mobile device simulation
toolchain was the right choice.
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6.2 Virtual Video System for Gazebo

The virtual video system has been tested in several different scenarios. Some examples of
those scenarios are:

1. The flycam, controlled by the SpaceNavigator, was used for presenting the Cognitive
Office over several Skype video chats.

2. The flycam and the camera move node were used for flying through a model of the
TUM building 0509.

3. The virtual mobile device, equipped with a virtual camera and a virtual display,
was used for performing the QR scenarios that are described in Section 4.7 and
Section 5.4.

4. The Linux video loopback module was used for streaming the kinect4skype output to
several media players at the same time.

5. The vnc image client was used to display the content of a real PC monitor on the
virtual monitor of the Cognitive Office.

Example scenario 1 used almost all parts of the implemented video toolchain. The virtual
camera was bound to the flycam model and the monitor in the Cognitive Office displayed
the image stream of the camera using the dynamic texture based virtual display. The
image sink was used to write the camera images to a video loopback device from which
Skype was reading the V4L2 stream. In Example scenario 3, the virtual camera and the
virtual display were both bound to the mobile device model. Scenario 4 was performed
for testing the compatibility with the most common multimedia player and other video
clients, such as

• guvcview, a GTK+ UVC viewer.

• luvcview, a small video capture program for webcam testing and problem debugging.

• VLC media player, a common media player and multimedia framework.

• Skype, a messenger with video chat support.

• Google voice and video chat, adds voice and video chat support to Google products
like Google Mail or Google Talk.

The scenarios have been used to test the modules and their interaction. Regular iterations
and changes of constellations have been performed in order to locate problems and to
verify, that problems have been solved. In addition to the given scenarios, variations
and combinations of them have been tested. The system was further tested on different
hardware and under different Ubuntu versions. At the current stage, their are no known
problems in the video toolchain and all of the tested V4L2 clients are working flawlessly
with the video loopback device.



Chapter 6 Evaluation of the Implemented System and Improvement Ideas 81

The source code of the implemented modules is well commented. For C++ implementa-
tions, a Doxygen [82] compatible notation was used. Python docstrings were used for most
of the written Python code. This means, that the source code is prepared for automated
source code documentation systems like Doxygen [82] for C++ or Epydoc [83] for Python
that are commonly used by the ROS project.

The frame rate of the virtual camera in Gazebo is depended on the rendering frame rate
of the scene itself, since it is hooked to this rendering. That means, when the rendering in
Gazebo is slow, the frame rate of the camera will also be slow. Another drawback of the
virtual camera is, that it does not support distortion at the moment. This is especially a
disadvantage when computer vision algorithms should be tested, since compensating for
the distortion is an important task for real camera systems.

When a virtual display is bound to an object, the dynamic texture is currently shown on
every vertex face of it. This can easily be changed in the source code. But defining the
the correct face in the URDF file would be very hard for generic meshes. This could for
example be solved by assigning a special texture to the mesh in the 3D modeling tool and
replacing this afterwards with the dynamic texture for the virtual display. The image file
loading algorithm supports all common image formats and all kinds of BGR8 and RGB8
images from ROS image topics can be loaded into the texture buffer. This can should be
sufficient for most use cases. In a next version, the displaying of video files could be added
to the virtual display.

The image sink video stream writer currently only supports the YUYV pixel format and
memory mapped operation. Since the YUYV format is also the default pixel format for
most clients, there is currently no need for adding other formats. The memory mapped
operation is only relevant for the communication with the video loopback module. For this
reason, it is not necessary to add other writing techniques to the writer.

6.3 Android Emulator Integration

The sample scenario in Section 5.4 gives a first impression what is enabled by the linking
of the Android emulator with video toolchain. The realization of the integration allows the
usage of the virtual camera images in every available Android application which access the
camera via the common Android API functions. The content of the Android emulators
display can also be shown on the virtual display of the simulated mobile display. The
modified Android system allows to use the network in the emulator similar as on a real
device. The automatically set up VPN connection enables direct connections to all hosts
in the Münchner Wissenschaftsnetz (MWN) and vice versa.

In contrast to the video toolchain, the Android emulator integration is not yet working
flawlessly. The tiny roscpp client, which was integrated at the lowest possible level in
the Android emulator, is very slow. On average it can only handle a frame rate of 2
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frames per second. Sometimes the applications, that access the camera, even crash due
to the slow image processing of the mediaserver. As the potential cause of the problem,
the incomplete support of POSIX Threads (Pthreads) and std::String could be identified.
Although the approach to integrate the ROS binding at the lowest possible level was
chosen in order to maintain all API functions unchanged, it seems to be reasonable to
integrate the ROS binding directly into the Android Java API. This should be not to hard
to implement by using the recently released rosjava ROS client library [84]. It is a pure
Java implementation of ROS with Android support. Using this library for implementing
the ROS binding directly in the Android Java API could have several advantages:

• The integration is easier to debug since stack traces and error are automatically
published by the logging feature of Android. The tiny roscpp client could only be
debugged using the GNU Debugger (GDB).

• More complete and tested implementation of the ROS API which can be used for
the integration of other sensor data from the virtual environment, too.

• No need to update and maintain the tiny roscpp library on Android or ROS up-
dates.

The automatically started VNC server on the Android emulator is used to get the screen
content of the Android emulator back into the simulation. The chosen VNC server fastdroid-
vnc is working very reliably, but causes some significant processor load for the virtual
Android instance. A big drawback of the VNC solution is, that camera content, that is
displayed on the screen, cannot be read out by VNC. For this reason, the image of the
barcode scanner application in Figure 5.4 does only show the overlay generated by the
application itself. This is due to the fact, that the camera image is rendered to another
buffer like the generated screen content which is read out by the VNC server. A possible
solution for this problem could be to use the built-in VNC server of QEMU on which
the Android emulator is based. But enabling the VNC server by adding the parameter
-vnc :1 to the Android emulator startup command, leads to a stuck loading screen of the
Android emulator.

Another problem is the Android emulator itself. In some cases, the Android emulator is
very slow. But during this year’s Google I/O Xavier Ducrohet and Tor Norbye announced
some upcoming enhancements for the Android emulator [85]. Besides a new GL render
strategy and the emulator should also get some other performance improvements.



Chapter 7

Conclusion and Future Work

A new concept for modeling a mobile device and testing mobile software in a virtual
environment was introduced in this work. The overview of possible realization ideas for
various existing sensors and actuators is a good starting point for other implementations.
The prototypical implementation of the video toolchain gives an insight, how to approach
a realization of a complete toolchain in ROS/Gazebo. The integration of the Android
emulator enables testing of real-deployable Android applications in the created toolchain.
The QR code sample verifies that the implementation is working as expected and that
mobile software testing can be performed easily in the virtual environment.

The implemented video toolchain is not limited to the mobile device scenario. The
kinect4skype idea shows the capability of the implemented parts. The modular struc-
ture of the implementation allows reuse and fast adaptations for other projects, such as
for example tele-operation or surveillance scenarios. Especially the tele-operation of robots
and the remote control of intelligent things will become more and more important in re-
lation with mobile devices in the next few years. Already today mobile devices are most
popular user terminals for this applications. The implemented toolchain together with the
already available packages for the ROS are able to simulate the whole scenarios with just
a little development effort: many robots and intelligent objects are already available and
the mobile devices can be simulated with the implementation described in this work.

For a future work, the implemented toolchain could be refined and other concepts for
virtual sensors in Gazebo could be realized. Combining all the results in one application
could create a comprising mobile device simulator, that allows to create the mobile device
via an intuitive GUI, to prepare a test scenario and finally to perform and evaluate the
testing results. This would be a powerful application for mobile software developers. It
could be a decisive advantage in development and testing time and quality, and thus for
the success of the created application.

Other scenarios for the simulation toolchain are acceptance and usability tests for all types
of electronic devices in an early stage of their development. On the one hand, these tests
could be carried out by test candidates in front of computers. On the other hand, one
could use human models in the simulation environment. Representatives with different
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physical abilities could be created for each demographic group. This would allow to test
the usability of the devices, no matter what age, size or physical constraints the people
have.



Appendix A

Mobile Device URDF xacro-File

<?xml version="1.0"?>

<robot xmlns:sensor="http://playerstage.sourceforge.net/gazebo/xmlschema/#sensor"

xmlns:controller="http://playerstage.sourceforge.net/gazebo/xmlschema/#controller"

xmlns:interface="http://playerstage.sourceforge.net/gazebo/xmlschema/#interface"

xmlns:xacro="http://playerstage.sourceforge.net/gazebo/xmlschema/#interface"

name="mobile_phone">

<xacro:property name="pi" value="3.1415" />

<!-- Mobile device body dimensions and mass -->

<xacro:property name="height" value="0.1239" />

<xacro:property name="width" value="0.063" />

<xacro:property name="depth" value="0.01088" />

<xacro:property name="mass" value="0.129" />

<!-- Display dimensions -->

<xacro:property name="display_height" value="0.0909" />

<xacro:property name="display_width" value="0.0545" />

<xacro:property name="display_depth" value="0.0005" />

<!-- Mobile device body -->

<link name="mobile_base_link">

<inertial>

<origin xyz="0 0 0" rpy="0 0 0" />

<mass value="${mass}" />

<!-- Calculate inertia tensor for cuboid -->

<inertia ixx="${1/12 * mass * (height*height + depth*depth)}" ixy="0" ixz="0"

iyy="${1/12 * mass * (width*width + depth*depth)}" iyz="0"

izz="${1/12 * mass * (height*height + width*width)}" />

</inertial>

<visual>
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<geometry>

<box size="${height} ${width} ${depth}" />

</geometry>

</visual>

<collision>

<geometry>

<box size="${height} ${width} ${depth}" />

</geometry>

</collision>

</link>

<gazebo reference="mobile_base_link">

<turnGravityOff>true</turnGravityOff>

<material>Gazebo/Black</material>

</gazebo>

<joint name="display_joint" type="fixed">

<parent link="mobile_base_link"/>

<child link="mobile_display"/>

<origin xyz="0.002 0 ${depth/2}"/>

</joint>

<!-- The display -->

<link name="mobile_display">

<inertial>

<origin xyz="0 0 0" rpy="0 0 0" />

<mass value="0.0001" />

<inertia ixx="0.00000001" ixy="0" ixz="0"

iyy="0.00000001" iyz="0" izz="0.00000001" />

</inertial>

<visual>

<origin xyz="0 0 0" rpy="0 0 0 " />

<geometry name="mobile_display_visual_geom">

<box size="${display_height} ${display_width} ${display_depth}" />

</geometry>

</visual>

<collision>

<origin xyz="0 0 0" rpy="0 0 0 " />

<geometry name="mobile_display_collision_geom">

<box size="${display_height} ${display_width} ${display_depth}" />

</geometry>

</collision>

</link>

<gazebo reference="mobile_display">
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<turnGravityOff>true</turnGravityOff>

<material>Gazebo/Grey</material>

</gazebo>

<!-- Video texture controller binding -->

<gazebo>

<controller:gazebo_ros_video name="gazebo_ros_video_controller"

plugin="libgazebo_ros_video.so">

<!-- Link name, where the texture will be bound to -->

<bodyName>mobile_display</bodyName>

<!-- Topic, where image is read from -->

<imageTopic>/mobile_device/image_raw</imageTopic>

<!-- Topic for loading a local image file -->

<imageLoad>/mobile_device/load_image_file</imageLoad>

</controller:gazebo_ros_video>

</gazebo>

<joint name="camera_joint" type="fixed">

<parent link="mobile_base_link"/>

<child link="mobile_camera"/>

<origin xyz="0.032 0.01 ${-depth/2}" rpy="0 0 0"/>

</joint>

<!-- Visual representation of the camera -->

<link name="mobile_camera">

<inertial>

<origin xyz="0 0 0" rpy="0 0 0" />

<mass value="0.0001" />

<inertia ixx="0.00000001" ixy="0" ixz="0"

iyy="0.00000001" iyz="0" izz="0.00000001" />

</inertial>

<visual>

<geometry>

<cylinder radius="0.008" length="${display_depth}" />

</geometry>

</visual>

<collision>

<geometry>

<cylinder radius="0.008" length="${display_depth}" />

</geometry>

</collision>

</link>

<gazebo reference="mobile_camera">

<turnGravityOff>true</turnGravityOff>
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<material>Gazebo/Grey</material>

</gazebo>

<joint name="camera_unit_joint" type="fixed">

<parent link="mobile_camera"/>

<child link="mobile_camera_unit"/>

<!-- Rotate by pi/2 in pitch to get camera pointing in

-z direction -->

<origin xyz="0 0 ${-display_depth/2}" rpy="0 ${pi/2} 0"/>

</joint>

<!-- Camera unit (functional) -->

<link name="mobile_camera_unit">

<inertial>

<origin xyz="0 0 0" rpy="0 0 0" />

<mass value="0.0001" />

<inertia ixx="0.00000001" ixy="0" ixz="0"

iyy="0.00000001" iyz="0" izz="0.00000001" />

</inertial>

<visual>

<geometry>

<sphere radius="0.0001" />

</geometry>

</visual>

<collision>

<geometry>

<sphere radius="0.008" />

</geometry>

</collision>

</link>

<gazebo reference="mobile_camera_unit">

<turnGravityOff>true</turnGravityOff>

<material>Gazebo/Grey</material>

</gazebo>

<!-- Camera controller -->

<gazebo reference="mobile_camera_unit">

<sensor:camera name="camera_sensor">

<imageSize>480 800</imageSize>

<updateRate>30.0</updateRate>

<controller:gazebo_ros_camera name="controller-name"

plugin="libgazebo_ros_camera.so">

<alwaysOn>true</alwaysOn>

<updateRate>100.0</updateRate>



Appendix A Mobile Device URDF xacro-File 89

<!-- Topic, where image is published to -->

<imageTopicName>/mobile_device/image_raw</imageTopicName>

<cameraInfoTopicName>/mobile_device/camera_info</cameraInfoTopicName>

<frameName>mobile_camera_unit</frameName>

</controller:gazebo_ros_camera>

</sensor:camera>

</gazebo>

</robot>

Listing 1: URDF description of the mobile device. The macro language xacro is used to
simplify maintaining and editing of the file.
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