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Abstract—We aim at systems that make sense out of occurring
anomalies to autonomously learn to predict and detect possi-
ble occurring machine drifts, failures and deviations, and the
corresponding errors in the machines and products itself. To
assess our prediction and classification methods, we collected
data from a fully automated industrial machinery including 3
internal sensors in a large-scale dataset (> 87000 manufactured
pieces with 39 different product types, in a timespan of nearly
7 months). We present the scenario and describe the collected
data and the sensors. We describe the machine data and the
corresponding errors, and present a generic tool that allows
visualization, scripting, etc., especially when datasets have to be
shared, as it gives an insight into the complexity of the data and
the algorithms and make experiments as described in the paper
reproducible. We argue to be currently in a replication crisis
in data analysis that makes it close to impossible to replicate
empirical findings due to the lack of the availability of the
underlaying data and the implemented algorithms. We reached
a point where we need to question if the results can be believed
and how the datasets for evaluation are designed and recorded.
To support an inevitable fundamental change towards the full
openness of published results in collected data and the used
algorithmic processing with minimum effort, we present and
make publicly available (i) a large-scale dataset for IoT (Internet
of Things) based predictive maintenance in an industrial setting
combined with (ii) artificial intelligence algorithms used by our
group, elaborated on the dataset embedded in (iii) a general tool
to foster easily sharing of both for replicating results.

Keywords—sensor based manufacturing dataset; industry; ma-
chine learning; anomaly detection; defect detection; industry 4.0;
data sharing; toolset for result replication.

I. INTRODUCTION

Industry 4.0 has become an important topic for researchers
in the industrial domain. With the availability of sensors, con-
trollers and communication networks, a vast amount of data
can be collected to improve aspects of the industrial production
process [1]. Depending on the data, it can be utilized for
various application scenarios adapted from techniques used
in e.g. in human activity recognition architectures [2][3][4].
Important applications are transparency of the production pro-
cess, a highly customizable and dynamic production process
and smart manufacturing using machine learning [1][5].

One aspect of smart manufacturing is predictive mainte-
nance and machine fault detection [6][7]. Machine learning
in combination with sensor data collected beforehand is used
to predict the health of the machinery or detect deviations

from the normal state. When detecting a deviation from the
normal state a technician can be notified to take suitable
action. To this end, potential damages can be reduced by
suggesting maintenance beforehand or detecting defects when
they occur. For this, anomaly detection is successfully applied
by researchers in the industrial domain [8][9]. An example
for the application of fault detection is the early detection of
machine defects by observing the vibration of machine parts
using specifically placed vibration sensors [10][11].

In the industrial setting, anomaly detection is often applied
in areas where the machine executes similar steps for pro-
longed periods of time. Deviations from the normal operation
are expected to be induced machine issues. However, another
important goal of the advancements in industrial production
is a highly dynamic production that adjusts itself at any given
time. Different products are produced interchangeably as the
machinery adapts the operation mode according to the desired
final product. Therefore, the operation mode and the notion
of normal behavior can also rapidly change. This poses new
challenges for fault detection. Changing a product type can
be falsely identified as a defect. Likewise, types produced
in small volume can be identified as anomalous, as they are
insufficiently represented in the training data. Additionally,
comparing results for such an industrial process is challenging
due to the high variability of the process. Often each research
group collects their own data - some of which may not be
publicly available - using a custom set of specifically placed
sensors to perform their experiments. This makes replicating
and comparing results, and as a consequence, improving the
methods more challenging.

To this end, we present a dataset gathered from a highly
dynamic real-world industrial process and intended to be used
for fault detection, using already available internal sensors that
are part of the machine by default to increase the technical
applicability, in this paper. These sensors collect internal
information on the movement and electrical current of machine
parts. We provide intrinsic sensor measurements of a CNC
(Computerized Numerical Control) machine that is part of a
larger production line. There, the produced product type, and
configuration of the machine changes on the fly. The dataset
spans over a time period of nearly 7 months and contains
the production of 87650 workpieces from 39 different types.
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These product types share similar basic traits, but can differ
in characteristics such as size, design, and the presence of
certain traits. In addition to the sensor data, we also collect
the occurrence of machine events that are labeled by workers
as a ground truth. Together with the dataset we introduce a tool
to work with the data. This tool aims to facilitate the usage of
the data by providing a simple playground for experimenting.

We show first results from using product type-aware
anomaly detection to detect machine faults by performing
anomaly detection both globally and in the context of the
product type using well-known anomaly detection techniques.
These results serve as a baseline for future work to make
machine fault detection in a highly dynamic environment more
robust.

The remaining paper is structured as follows. Section II
describes the collected Dataset used for the Evaluation of the
Anomaly Detection Algorithms and our developed Sharing
Platform. In Section III we present the Evaluation of the
Anomaly Detection Algorithms in our Application Case. Chal-
lenges and Future Developments are highlighted in Section
IV. The paper is closed with Section V, that summarizes and
recaps the achievements and contributions. Section VI links
to the online sources where the collected Dataset and the
developed Tools are available for download.

II. DATASET

A. Data

We obtain our dataset from an ongoing real-world in-
dustrial CNC production line. This production line operates
fully automated and produces a variety of different products
depending on customer demand and ad hoc supply. Further,
the production is performed in a mixed fashion. Products
within a configured set of possible product types are produced
in a nearly arbitrary order and quantity. Fig. 1 shows the
total number of products within the configured set of possible
product types for the day, while the products in the configured
set are produced in arbitrary order. The product types can differ
on properties such as size, design, and weight. Therefore,
the processing of the workpiece is adjusted depending on the
desired result.

For this dataset we use various internal sensors to observe a
single CNC machine that is part of this production line. These
sensors are part of the machine’s standard equipment. By using
the internal sensors, the transferability of results to similar
production lines is increased due to reduced requirements
for the sensor setup. An overview of the measured machine
properties is shown in Table I. We observe the speed and
electric current of the milling spindle and the electric current of
the servomotor. The electric current of the servomotor also has
multiple channels for the current in each direction. We collect
the data for this dataset over a period of nearly 7 months,
spanning from November 2020 to May 2021. In that time
frame, a total of 87650 workpieces from 39 different product
types are observed during production.

The workpieces are processed in a sequential order and
the production can differ depending on the product type.

Fig. 1. Number of manufactured products per product type during a seven-day
period. Value denotes the total number of products for this day, as configured
product types are produced interchangeably in a nearly arbitrary order.

TABLE I: OVERVIEW OF THE OBSERVED FEATURES IN THE DATASET

Feature Channels Samples Time Unit Sampling Rate HDF5 File

Spindle Speed 1 87650 ms 7,8125Hz spindle.h5
Spindle Current 1 87650 ms 7,8125Hz spindlemeter.h5

Electric Motor Current 2 87650 ms 7,8125Hz servometer.h5

Therefore, the measurements are segmented into time series
for each individual product. A measurement starts when a new
unprocessed workpiece enters the CNC machine. Once the
product is finished and exits the machine, the measurement
is stopped. In between this period, we collect data of the
aforementioned properties with each sensor aiming to measure
their respective property every 128 milliseconds. On average
we measure around 1100 time steps per sensor channel during
the production of a single workpiece. An example for the
resulting time series is shown in Fig. 2. There, the rough shape,
and value range of the time series for a single product during
normal production is illustrated.

The results of the measurements are written into CSV
(Comma-Separated Values) files, as shown in Fig. 3. Each
property is in a separate file as the sensors collect the data
independent of each other. The rows of the CSV files are
structured as follows:

<timestamp>,<channel 1>,<channel 2>,. . . ,<channel n>

The first column is the time at which the measurement point
was collected. The following columns are the values of the
respective channels at that time.

Each product type has an individual program that defines
how the production process is performed. Therefore, the mea-
sured values can deviate, when comparing the processing of
different product types. Distinct types can differ in properties
like duration and shape of the time series. So, the data
collection system also queries what product is produced by
the machine. With this we can attribute each segment to a
distinct product type.

To make our data accessible and to work with it we
convert each individual CSV file to a pandas Data Frame.
The structure of a Data Frame corresponds to the structure
of the respective CSV file. The columns of the Data Frame
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(a) Speed of the milling spindle

(b) Electric current of the milling spindle

(c) Electric current of the servomotor

Fig. 2. Measured values of the three observed properties during the processing
of a single workpiece.

are the channels of the property, while the index is the
time of measurement. Since we have many CSV files, we
collect the Data Frames in HDF5 (Hierarchical Data Format
version 5) files. Each property is stored in an individual HDF5
file. The names of the files for the respective properties are
shown in Table I. The hierarchical structure of the HDF5 files

Fig. 3. Sensor collection setup.

themselves looks as follows:

/<property>/t<product type>/<measurement>

The ID of the product type, that corresponds to the measure-
ment, is encoded within the hierarchy as additional informa-
tion.

B. Ground Truth

The ground truth data consists of machine defects and
production issues during the time we collect the measurements.
It is in the Events.xlsx file and contains labels for events
when the machine is down or transitions into a state that
requires human intervention or repair. Machine downtimes are
only included when the machine is turned on and has enough
available material. In our dataset, we have 1033 instances of
such events.

The entries in the ground truth have three timestamps.
The first timestamp - date - stands for the time the event is
detected by a worker or a monitoring system. The monitoring
system detects events when the production time of a workpiece
surpasses a certain threshold. The other two timestamps denote
the time period of the event, with the start and end timestamps.
These are inserted by the workers once they perform a checkup
or fix the machine. The events are non-overlapping and only
one event should occur at a time. During this period either
no products exit the production line, or production runs at a
limited capacity.

Each entry has a label for the type of event that occurs.
The labels are inserted by the workers after they resolve the
issue. We have five broader groups of events denoted by
numbers: Critical-(1), Major-(2), Minor-(3), Organizational-
(4) and Unknown-(5).

Critical events have a severe impact on the production
and the machine. They usually require the replacement of
machine parts and not responding timely can cause even
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Fig. 4. Number of defects for the three most severe events and total downtime
due to these three types of events in the first four months of 2021.

more damage. Critical events are usually when an important
machine part breaks. Major events are less severe, but still
have a high impact on the operationality of the machine
and might require intervention of trained personnel. They are
usually problems with the internals of the machine. Minor
issues mostly interrupt the production but can be fixed with
little effort and technical expertise. Common cases for minor
issues are jammed workpieces or loose parts, defects on
minor parts of the machine and incorrect operation of the
machine. Organizational events are intentional disruptions of
the production, such as performing changes on the machine.
Unknown events are issues with an unknown source that could
not be linked to a certain machine in the production line.

Fig. 4 shows the occurrence of critical, major and minor
events in the first four months of 2021, along with the total
downtime in hours due to these events. Minor events are the
most frequent types of events, while critical and major events
occur more rarely. In most cases, critical defects also occur
less often than major defects. In total one day to half a day
of production time is lost due to these types of defects every
month.

The groups have a set of issues that are assigned to them.
Each kind of issue is denoted by a categorical number that
uniquely identifies them. Following is a list of the groups and
the issues that are assigned to them: Critical: 1, 2; Major: 3,
4; Minor: 5, 6, 7, 8, 9, 10; Organizational: 11, 12; Unknown:
13. The ground truth contains all detected issues of these types
that occur during the time of our measurements. It includes
issues that originate from normal machine operation as well
as defects that originate from external factors, such as human
interference.

C. Data Access and Distribution

We developed a browser tool to facilitate access to and
experimentation with the data by allowing users to visualize
datasets and perform and reproduce data processing steps.
The purpose of this tool is to reduce the burden of entry of
working with this data by providing the ability to quickly run
small tests, view the code of the algorithms along with the
visualizations of the data, and thus facilitate the step to own

experiments/applications with the data. The goal of this tool
is to provide both the data and the code for the experiments
in the same environment.

The tool can be populated with custom algorithms in Python
code and custom data. It allows experiments to be executed
on the data and then displays the visualization of the data and
results.

The experiments are comprised of data processing steps
combined into a pipeline. For each pipeline step, the users can
define how data and intermediate results are to be displayed
and visualized by customizing the executed code. For this pur-
pose, the users are provided with a web interface in which they
can add and edit scripts for each pipeline step containing the
algorithms and the definitions of the visualizations. After the
execution of the pipeline, the results and defined visualizations
are displayed on the web interface.

The web interface consists of a starting page for an ini-
tial overview of the dataset, separate tabs to view and edit
each individual data processing steps and the functionality
to execute the data processing pipeline. Furthermore, the
resulting visualizations and output of the data processing steps
are displayed in the tab of the respective data processing
step once the pipeline is executed along with the respective
code. In addition, users can create additional data processing
steps, edit and delete the existing ones and define how final
and intermediate results are to be displayed for each step.
Therefore, the tool provides a plug and play playground to
adjust the data processing for further work. Further, the code
for the data processing steps can be extracted to a different
environment once a playground is no longer required, as it is
contained as python scripts within the too data.

The created visualizations together with data and data
processing steps can be passed on to other users so that they
can quickly execute the already preset application and thus
immediately execute the Algorithms and view the results.

In Fig. 5, the usage flow and the concept behind the
application is shown. Researchers from the publishing side
(Group 1) can make their data and scripts available in a
way the data can be easily accessed, viewed, and executed
experiments can be replicated in a local environment only
requiring python and relevant libraries for the data processing.
This allows other researchers (Group 2) to work with the data,
inspect results and perform further work on the data that can
yet again be made available.

We bundle this tool together with our raw dataset to make
the data more accessible, enable replication and facilitate
future work.

D. Data Quality

With the design of the sensor collection and label collection
setup we aim to ensure the quality of the provided data on
a level that correctly reflects the industrial process, but also
inherits challenges of the real-world processes. This might
even include unknown errors upcoming algorithmic solutions
have to cope with.
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Fig. 5. Schematic of the application workflow and deployment.

To collect the dataset, we made sure that workers are
trained and experienced in labelling events that happen during
production. The manual labelling of the data by workers during
the production is an already long-time established process and
the workers are used to it. Therefore, potential mistakes are
reduced as workers are already accustomed to the system. We
validated the semantic correctness of the sensor and label data
by performing multiple experiments [12][13][14][15] on the
data to predict upcoming errors in the production line.

The challenging and unique part of the dataset on the other
hand is, that we provide a dataset that faithfully represents
the available data in an ongoing industrial production under
real-world circumstances. This can possibly conflict with the
goal of providing a ”clean” dataset where any unexplainable
data is filtered out but offers the advantage of still containing
each little and possible latent piece of data. We accept minor
limitations regarding the quality (i.e. sensor failures) of the
data that remain in the dataset on purpose. We see this
as a tremendous advantage compared to clean, sometimes
even artificial datasets, as our approach leads to more robust
algorithms that must deal with imperfect circumstances in a
non-perfect world. In addition to sensor failures, sensor noise
and further inaccuracies can be present. It can occur that the
completion of a product is recognized too early or too late. In
the latter case, measurements of other products are attributed to
a single product. As the properties are measured independently
of each other, the time sensors values are sampled can deviate
between different properties. While we aim to collect mea-
surements every 128 millisecond, the actual period between
sensor measurements is variable. Reasons are latency, limited
processing power and throughput of the industrial network.

The ground truth consists of events that could be detected
as they had an impact on the production. Therefore, labels
exist for the most important events that occur, but labels
are not all encompassing. As the labels are generated by
observing the production instead of generating them from the
sensor signal, anomalies found in the sensor signals that have
no perceivable long-term impact on the production remain
unlabeled. Labels for anomalies like a temporary drop-off in
the production speed are unavailable. These events would only
be labelled indirectly if they result in a noticeable production
issue later. As it is a non-isolated running system there are also
several external factors that can induce anomalies unrelated to
defects. For example, the machine can be stopped or slowed
down to perform trials and visual checkups. Such events are
also included in the ground truth and might not have early
indicators. Therefore, events prior indicators or anomalies can
exist in the ground truth. As previously noted, there also exist
instances of labels with an unknown source when the workers
were unable to identify the defect or were absent during the
occurrence of the defect. This also means it is unknown if the
labels are relevant to defects of the machine.

III. APPLICATION CASE - EVALUATION

A major objective to achieve with this data is the detection
of machine faults and defects during production. Observing
the ongoing stream of sensor data, a machine problem should
be reliably detected either when it occurs or in advance to take
possible countermeasures and reduce damages. On the other
hand, false positives - due to the dynamic production - should
be minimized as appropriate responses require capacities from
trained technicians. Therefore - following our previous work
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on similar machines [12][13][16] - we execute a baseline
experiment for machine fault detection with this dataset using
anomaly detection methods.

For this baseline approach we perform anomaly detection
on the level of products. As samples we use all sensor data
obtained during the processing of an individual item. Each
sample consists of multiple time series that form the feature
vector. The number of time steps in these time series can be
very high and variable. Therefore, we first reduce the size
of the time series to a fixed length. Piecewise Aggregate
Approximation [17] is applied to transform each time series
into a time series with 100 time steps. We then combine
all time series to a single feature vector that is used as
representation for anomaly detection. From the set of events,
we aim to detect events from the critical and major groups.
These issues have the biggest impact on the production and
the machine. Therefore, detecting these issues has the highest
priority for us. Other less critical events are ignored for this
experiment.

As the objective of the fault detection is to detect problems
in the ongoing production, we setup the anomaly detection to
reflect an on-line application. We use Holdout Cross Validation
to tune the algorithms. Therefore, the training, validation and
test sets only contain data that is measured in the respective
time frames. During the test stage, we also use both the
training and validation set to train the anomaly detection
models.

Before training the anomaly detection models, we first
clean the training set by removing all samples that were
measured in a time frame of 4 hours before a critical or major
event. Then we use the cleaned training set to train a model
for the global production context. This model should detect
deviations from previously seen production across all different
product types. To also take deviations in the context of the
produced product type into account, we subdivide the training
set by the product types. Each resulting subset only contains
measurements of a single product type and is also used to train
models. So, we also build models that evaluate the deviation
of measurements compared to their respective peer group with
the same product type. A deviation from other measurements
of the same product type should be detected by these models.
As machine learning techniques for the models we used: Iso-
lation Forest [18], One-Class Support Vector Machine (SVM)
[19], Autoencoder [20] and Variational Autoencoder (VAE)
[21], k-Nearest Neighbors (KNN) [22], Minimum Covariance
Determinant (MCD) [23], and Histogram-based Outlier Score
(HBOS) [24].

For a new measurement anomaly detection is performed
with both the global model and the model of the respective
product type. The state of the machine during the measurement
is then deemed anomalous if both models detect it as an
anomaly. Otherwise, it is considered normal.

To evaluate the performance of the anomaly detection in
such a scenario we calculate the precision, recall and the
scores using the scoring method by Lavin et al. [25]. We use a
window of 4 hours before the actual event for all metrics, as at

the time of the event there is already an impact on the machine
and in the best-case events should be detected before they have
an impact. Therefore, all detections within that window are
considered true positives. For the method by Lavin et al. [25]
we also calculate the scores for all three proposed profiles,
giving different weights to false positives, false negatives, and
true positives. The standard profile of this method is also used
as the metric during parameter tuning.

TABLE II: RESULTS OF THE ANOMALY DETECTION EXPERIMENTS.

Method Recall Precision Standard[25] Low FN[25] Low FP[25]
One-Class SVM 86.6 41.5 59.89 68.85 53.03
Isolation Forest 86.6 44.1 61.31 69.80 54.90

Autoencoder 86.6 41.2 60.23 69.08 53.71
VAE 86.6 40.6 60.04 68.96 53.34
KNN 30.0 50.0 24.25 26.17 23.51
MCD 53.3 23.8 33.66 40.24 25.52
hbos 83.3 37.8 58.16 66.58 51.54

We show the results using the baseline approach to detect
machine defects in Table II. In this table, we show the recall,
precision, and scores of the aforementioned scoring method
with the three default profiles for the corresponding machine-
learning method. One-Class SVM, Isolation Forest, Autoen-
coder and Variational Autoencoder already perform quite well
and can detect or find early indicators for 86% of the detects
during the test period. Isolation Forest performs slightly better
than the others as it has fewer detections without correspond-
ing labels. In Fig. 6, we show the first anomaly detected
by the four aforementioned methods during the test period.
This detection is compared to two other randomly selected
reference samples of the same product types by overlapping
and aligning them by their start. Visually the anomalous mea-
surement is distinct from the other measurements. The curve
of the electric current of the anomalous sample starts to deviate
45 seconds into the measurements, while the movement drops
off after 60 seconds. The production then stops too early
shortly after that and no more data is received, while the
production in the reference samples continues normally. This
anomaly also coincides with a critical defect that occurs at
the same time. In terms of precision the scores are lower.
There we have a precision of 40% in most cases, except
for KNN where the recall is also very low. Generally, the
detection of false positives is a challenge for all methods. All
methods have a better recall than precision. This also reflects
in the other scoring metrics. The scores are generally lower
when putting an emphasis on few false positives. Therefore,
a relatively high recall is already achievable and thus the
considered types of events are detectable. On the other hand,
detections that cannot be attributed to the considered events
exist and a higher precision would be desirable. One thing
to note in that context, is that only critical and major labels
created by factory workers are used for evaluation. However,
anomalies could also exist outside of these labels, as there are
also other types of events and the labels are not created by
analyzing the sensor signals themselves but by observing the
production of the machine. Therefore, the false positives are
only the context of the available labels for critical and major
events. As a baseline, we manage to achieve a recall of up
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to 86% and a precision of up to 40% to 50% on major and
critical events by performing anomaly detection in the global
context and the context of the concrete product type.

(a) Speed of the milling spindle for one anomalous sample and two randomly selected
reference samples

(b) Electric current of the milling spindle for one anomalous sample and two randomly
selected reference samples

Fig. 6. Speed and electric current of the spindle during the first anomaly
detected by the One-Class SVM in the test set compared to two randomly
selected reference samples at other times. The start of the reference samples
is aligned with the start of the anomalous sample to visualize differences.

IV. CHALLENGES WITH DATASET/FUTURE

The experiment and results in this paper are the foundation
for future work and intended to be a basis for assessing new
approaches and experiments. Therefore, there is potential to re-
fine the approach or find new approaches that perform better in
terms of the raw scores (e.g., by using different representations
of the sensor data or machine learning techniques). On the
other hand, we only use the most critical events as target labels.
While we can already achieve decent results in terms of recall,
the performance in terms of precision lower. This suggests
there could be other events, in addition to the considered ones,
that could be identified reliably. Consequently, exploring the
recognizability of different event types is another aspect to
look at.

During our experiments and first tests for an online appli-
cation, collaborating with technical experts by communicating
the occurrence of anomalies posed a big challenge. Usually,
the occurrence of an anomaly alone is insufficient information
for them. On the other hand, the technical experts usually
have extensive knowledge about the machine on a technical
level. Communicating an explanation in how the sensor data
deviates or the expected type of problem that will occur could
help to resolve machine problems more efficiently. So, after
performing anomaly detection, explaining the detection, or
linking it to a concrete type of problem would be another
goal. Connected to explaining the detection, is the automatic

labelling of the defects. Currently workers must manually label
downtimes of the machine when they occur. This means when
workers are not present during the downtime or lack training,
information can be lost about the cause. As the labelling is also
performed manually, there is always the potential that mistakes
can occur. This can potentially hinder performing special
measures against the systematic occurrence of certain kinds
of defects. When certain problems arise regularly or in a high
frequency, more throughout inspection and maintenance needs
to be performed to eliminate the cause. Therefore, another
aspect to improve the uptime of the machinery would be to use
historic information from the dataset and create an automatic
classification system to also label the downtimes automatically.
Lastly, the labels in this dataset only capture the potential
effect of anomalies and the labels are not directly linked
to samples. Anomalies in the sensor data are not labeled.
This poses a challenge when evaluating new algorithms as
commonly used metrics are only applicable to a limited extent.
In our experiment we dealt with this by using time windows
around the events. However, this requires a parameter that
influences semantics of the anomaly detection. As labels
for anomalies in sensor data are often unavailable in real-
world industrial processes, exploring non-parametric methods
to evaluate anomaly detection with fuzzy labels can help to
improve the applicability in industrial settings.

Currently our approach is based on raw sensor data streams
and the hypothesis that an unexpected event, named anomaly,
happens in the near future, and with a causal relation to a
critical event. Given this systematic, our approach can be
generalized to cases, where a given signal characteristic and
its future outcome is known, but it’s unclear when the signal
characteristics itself began the diverge from the expected
one, finally resulting in an unexpected or unwanted system
behavior.

V. CONCLUSION

Detecting failures and defects of industrial machines by
observing deviations from the normal operations is an im-
portant aspect to increase the availability of machinery and
the efficiency of industrial production lines. By providing
information about possible (upcoming) defects to machine
operators and technical personnel actions can be taken to avoid
or mitigate possible damages. One challenging scenario, that
becomes more important as industrial production advances, is
the detection of failures in a highly dynamic production, where
the production can rapidly change depending on the require-
ments for the desired product. In this paper, we present a real-
world dataset collected from a single machine that is part of
a dynamic production line. In this production, line configured
product types can be produced interchangeably depending on
demand. The dataset consists of intrinsic sensor data, collected
by internal sensors that are part of the default equipment of the
machine. These sensors measure the movement and electric
current of different machine parts. In addition to the sensor
data, we also provide the occurrences of observed machine
downtime - manually labelled by workers - as a form of
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ground truth. Along with the dataset, we also provide a tool
to access and work more easily with the data by providing
a playground to test new approaches. We show initial results
of an approach that uses a majority vote between anomaly
detection in a global context and in the context of the concrete
product type to detect machine defects. There, we achieve a
recall up to 86% and a precision of around 40% to 50%.
This shows that, while being able to detect already a high
number of defects, the precision should still be improved for
technicians to effectively use the information. These results
serve as a baseline for future work and improvements to
detect defects more reliably in a dynamic real-world process.
Further, we also outline additional challenges - aside from
detecting the machine defects - that operators of the machine
have when interacting with the machine to gain insight on
the machine, increase uptime and take correct measures. This
dataset could also help to tackle these challenges and further
improve industrial production.

VI. AVAILABILITY OF THE DATASET AND TOOLS

The full dataset, the scripts, and the sharing platform for this
paper are made publicly available at https://www.hasisaurus.
at/DataSet.html. When using our Dataset please cite this work
and/or one of [12][13][14][15][16].
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