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Huge amounts of data are produced inside an industrial production plant every minute. This data is 
getting more accessible by higher network and computing capabilities. This poses an opportunity to apply 
methods in real time to support the reliability of production machines. In theory every time series, that 
is currently monitored by for a breach of thresholds, can be extended with a forecast method. Classical 
approaches, such as ARIMA and Exponential Smoothing can be used for forecasting. To describe the signal 
and boost the forecast results we use a clustering method to group each unknown data stream in a 
seasonality class. This seasonality classes can be used for insight into intra and inter group behaviour 
between machines and add causality to factory wide correlations. We collected 10000 multiple day 
segments of multiple identical and different machines. We manually hand labelled the data segments 
for their seasonality pattern to compare and explain the clustering results. Classes, obtained through 
clustering, are used to adapt each single forecast model for every machine. For the forecast method we 
could show improved results by selecting the correct seasonality for each data stream.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

If we deal with big data, we often have a high degree of com-
plexity and unknown information. In an industrial setup when 
analysing existing systems, the data patterns, characteristics and 
relationships of different sources are often unknown [1]. It is diffi-
cult to apply data analysis methods without these information.

In a previous study [2] we investigate identical lines of ma-
chines which are used for mass production. The setups are com-
posed of identical machines by the same supplier but can show 
differences depending on location and product type produced. We 
observe the real-time sensor data of multiple production machines 
with unknown dependencies to either the previous production 
steps or environmental influences such as daytime or physical lo-
cation. In this work we extend an outlier and trend detection sys-
tem by adding a seasonality analysis to categorize the time series 
and make a prediction for the error probability. In our work [3]
we compared the results of differently configured Holt-Winters se-
tups depending on previous sorting of seasonality and trend. We 
aim to extend this method by a two step process of seasonality 
clustering 1.
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We propose a system, that gathers data and adapts in an oppor-
tunistic [4,5] approach to use different techniques of data analysis. 
The approach allows the system to adapt without the necessity of 
manual actions by a controller. We implement a live system that 
is able to distinguish between a continuous erroneous change in-
side the data stream and isolated outliers which are caused by 
measurement errors for single work-pieces. We focus on contin-
uous erroneous changes which allow the production worker to 
make corrections. A continuous erroneous change is defined, as 
a permanent shift of the observed variable towards the defined 
thresholds. We create a model, which allows to observe the ma-
chine park as a single entity with different seasonality patterns 
and their number of occurrences as characteristics. This informa-
tion can be used by experts to directly counteract this behaviour, 
for results such as shift dependent changes, or weekly or bi-
weekly changes due to cleaning plans. More complex measures, 
such as factory wide cooling systems can be planned accordingly 
due to the knowledge of the placement of machines with a daily 
seasonality.

We observe a production system where we get measurement 
values for every produced sample for multiple machines of the 
same type. Every sample is evaluated by a comparison to a pos-
itive and negative threshold. All produced parts need to be within 
these thresholds to be considered okay and not get sorted out. 
These tolerance intervals are manually set and can be shifted to 
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a small degree to adapt to small shifts of the measurements. If a 
sample exceeds the limits it is removed from the production pro-
cess. It then gets manually checked for a measurement error and 
sorted out if the second test proofs the automatically detected er-
ror was correct. If multiple confirmed errors appear over a short 
distance the process parameters are evaluated by experts. We aim 
to start this evaluation process before an accumulation of errors 
appears. With this forecast the production time and more impor-
tantly faulty work pieces can be reduced.

The number of faulty parts can be reduced if a trend inside 
the data can be detected, and preemptive measures can be taken. 
We implement a system to dynamically select the best forecast 
method from different forecast models such as different ARIMA [6]
configurations, exponential smoothing [7] and the Holt-Winters 
method [8]. The forecast can be compared to the positive and neg-
ative tolerance thresholds. To account for the data variance, we do 
not aim to predict the next sample of the time series. We make a 
forecast of the probability of a certain number of upcoming sam-
ples being outside the tolerance threshold.

We observe the differences between machines of identical con-
struction type to select the forecast method. Depending on ma-
chine and production type behaviour, different forecast methods 
can perform differently. The selection is done by analyzing the 
seasonality [9] for each individual work-piece type and machine 
combination. For each machine, the optimal forecast method can 
result in a higher prediction accuracy when combined, in compari-
son to a single forecast method applied to all machines. Using this 
setup, a live adaptable solution for multiple production lines is cre-
ated.

We conduct a pilot study to give experts insights into the ma-
chine behaviour and warnings of upcoming deviation. We imple-
mented a system to detect trends and use a probability model to 
support the decision for the experts. The design goal was to keep 
the system simple and comprehensible in every step, which is why 
we do not use neural networks approach the problem. The decision 
is whether to intervene and for multiple erroneous trends on mul-
tiple machines a priority which machines need to be maintained 
first. For the pilot study we will not intervene on those errors but 
monitor if the predicted errors will occur.

We use seasonality information to boost the accuracy of the 
proposed prediction for the underlying system and use case. The 
further aim of the seasonality detection is to give insight into the 
characteristics of the observed production line or machine. The 
analysis of seasonality can give insight into unknown machine be-
haviour. A correlation between detected errors and error common-
ness for machines with seasonality and without seasonality can be 
examined.

2. Related work

To predict upcoming system deviations, we used a dynamic 
recognition system [2]. We collected time series data and analyzed 
the behaviour to detect a deviation from normal behaviour. The 
setup was used to detect critical errors which need to stop the 
process immediately to avoid damage to the production machines. 
These errors are sparse, but maintenance is done permanently on 
all production lines. In this work we aim to extend the system by 
adding a forecast for a threshold-based system. Instead of moni-
toring the time series for strong changes, this approach analyses 
the behaviour over a given time span. This analysis is used to 
estimate a probability of faulty parts for the next n samples. By 
combining both approaches we aim to alert the experts and work-
ers on upcoming critical errors and support maintenance decisions 
on non-critical machines by ranking the faulty products probabil-
ity.
2

The system we implemented fulfills the demands of a low cost, 
scalable, self-configuring architecture [10]. No additional manual 
input is needed to extend the system to additional production 
lines. The system is also capable of adapting to similar production 
system where single variable values are monitored by threshold 
systems. For the prediction of maintenance previous work uses 
machine parameters and product quality [11]. A study about the 
technical issues was conducted. The main issues for people inside 
the industry were gathered and the most valuable aspects were 
rated. The highest priority was the ability to continuously monitor 
the process parameters and if those range in between pre-defined 
thresholds.

We aim to monitor the condition of the produced samples. Pre-
vious work has shown the necessity to give an alarm before reach-
ing a critical threshold. A one-step-ahead prediction of the time 
series created by a regression tree showed the potential for the 
machine condition prognosis [12]. The observation of a machine 
resulted in a low prediction error which was measured with the 
root mean square error (RMSE). We aim to extend the approach 
and make it suitable for a multi machine setup and compare the 
result of different prediction methods. We aim to predict multi-
ple steps ahead and apply an adaption beyond a single observed 
system.

For seasonality influenced forecasts exponential smoothing can 
be used [7]. Exponential smoothing methods were evaluated and 
the result was different methods for different application cases, 
depending on data properties. They also found weaknesses in prac-
tical setups due to default parameters being set. Compared to the 
Exponential smoothing we will compare to neural networks ap-
proaches, such as a Deep Neural Network (DNN). Neural networks 
have been previously used to forecast seasonal data [13]. Long 
short term memory (LSTM) neural networks have been used to 
forecast data with seasonal components [14].

Classification for trends was used in previous work [15]. They 
used a trend classification algorithm on stochastic time series data. 
They showed that the proposed methods can detect local and 
global trends inside the data and therefore can improve the pre-
diction methods for the time series. The historical trends are used 
to forecast the trend using different classification techniques such 
as Naive Bayes, Decision Tree or SVM to predict a given day. We 
aim to use classification of trend and seasonality to predict the 
probability of an error.
The Mann Kendall approach has been previously used in different 
domains, that are influenced by seasonal trends, such as trends 
inside water quality [16], and has also been modified to fit re-
gional trends [17]. The application of this method to test for trends 
and seasonality has been implemented previously [18]. We aim to 
implement a similar method, with a focus on detecting and defin-
ing the seasonality, instead of removing the seasonality for trend 
detection. We aim to apply a model which considers the uncer-
tainty of the prediction [19]. We will use a probability distribution 
to account for the variability of the data and the prediction re-
sults.

The system needs to be capable to divide between an anomaly 
in the data that can cause an error and anomalies caused by a 
seasonality. Previous work used an algorithm to flag data influ-
enced by seasonality to exclude anomalies [20]. A cumulative sum 
control chart algorithm is used to detect anomalies inside the 
data set. A uniform frequency of two minutes is assumed for the 
data. Their algorithm uses the additional information of an opti-
mized threshold and seasonality to boost the accuracy on their 
data set with seasonal changes. For our proposed system we do 
not detect anomalies by using detection methods. We aim to im-
plement a method to find that seasonality influenced data sets 
and change the behaviour of the forecast. For each time series 
or subproblem as called by Torres et al. [21] an individual pre-
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Fig. 1. For each time series a new incoming value is checked. 1.) Each detected outlier is removed by the median value of surrounding values. 2.) The seasonality of the time 
series is evaluated. Each time series is sorted into one of the three categories for seasonality, which are daily, yearly (long time), or neither. To predict the upcoming values of 
the time series a forecast method depending on the seasonality is used. 3.) The probability of system failures in the upcoming samples is calculated. 4.) If a high probability 
for a continuous error is detected and a warning is sent to a technician or foreman depending on the gravity of the error or the repeated occurrence.
diction method is selected. For their deep learning approach they 
carried out a grid search to optimize the hyper parameters. Sin-
gle outliers inside the data need to be detected by our approach. 
Multiple approaches for anomaly detection have been proposed ei-
ther using a statistical approach [22,23] or machine learning, such 
as neural networks [24]. These different approaches can be used 
interchangeable in the pipeline we aim to build.

In previous work the best forecast models were selected and 
compared to use the single most effective model for an underly-
ing problem. We aim to extend these system setups by dynam-
ically selecting the best forecast model for each underlying ma-
chine. We apply a clustering method to detect seasonalities in the 
data which can be a causality for relationships between different 
data [25].

3. System state and goal

We implemented the rule based seasonality detection system 
and used it for the feature selection in a live system as shown in 
Fig. 1. The adaptability of this system provided the advantage of 
a single configuration for multiple machines and machine groups. 
The only necessary information we need to configure by hand are 
either the endpoints of the Open Platform Communications Uni-
fied Architecture (OPC UA) or columns of a database. The informa-
tion include the measurements, thresholds and machine identifier. 
From an initial setup of 48 machines, we use for the testing, we 
could extend the framework to 3 further groups of machines which 
include 93 machines with an implementation effort of less than 
one day. Furthermore, any machine with network capabilities and 
a necessity to monitor trends can be added into this setup. The 
system checks the probabilities of an error for each new measure-
ment read or entered into the database. The main setup from a 
user perspective is to define the probability threshold, as it con-
trols the number of warnings that would be sent out. For each 
work piece type we can train the model, as soon as we have a sin-
gle session of the work piece recorded. For this first session, we 
can determine the seasonality, and boost the accuracy of the pre-
diction model.

We recognize the error types (I) continuous errors and (II) out-
lier errors as it can be seen in Fig. 2. The system is capable to 
distinguish between continuous errors and outliers. A continuous 
error is a continuous change in the time series, which leads to a 
certain amount of erroneous work pieces. It is either a change in 
average, slope or variance, which leads to exceeding pre-defined 
thresholds. An outlier is a single observation or measurement 
3

Fig. 2. The different error types that can occur in the system. The area in the box is 
a continuous error. For a continuous error, not every sample needs to be outside the 
threshold, but a certain amount of work pieces. For the forecast, the probability of 
a given number of work pieces being outside the threshold is used. The continuous 
error needs to be dealt with by making corrections. The highlighted sample (marked 
with a circle) is an example for an outlier. These outliers can either be caused by 
measurement or process errors, as for example human influences.

which differs from the median by an absolute deviation [22]. These 
outliers can be removed by a median filter. It is important for the 
system to be able to differ between a continuous error and an 
outlier error. This is important for the observers workflow. A con-
tinuous error needs to be resolved manually or adjusted by the 
system if only a small change appears. For the observed produc-
tion setup an average of 23% of faulty outliers do not trigger any 
kind of process, where a manual correction needs to be done by a 
machine controller. Meanwhile 77% of faults, caused by a continu-
ous error, need to be corrected in several steps on the production 
site.

We forecast the continuous errors for linear trends towards the 
tolerance values. The continuous errors can appear after a mainte-
nance or through a trend towards the tolerance limits during the 
production process due to wear. Trends inside the data need to 
be observed and the probability of a continuous error triggers an 
alarm for the machine controller. We implemented a decision sup-
port system to decide which errors need to be reacted to on high 
priority. For each detected continuous error, we rate the probabil-
ity of failure and rank it for the machine controller.
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Each result gets sent to a database with the machine name and 
probability of failure in the next n steps, for multiple n. A business 
intelligence software is used to visualize the order of maintenance 
importance. For critical cases an automatic email is sent, which 
includes the machine identifier, probability of error and an image 
of the threshold comparison 2.

Beyond the information of the forecast, we had to question the 
origin of the seasonality. To get a deeper understanding of connec-
tions between this behaviour for multiple machines, we implement 
a system to recognize and sort seasonality more precisely. We can 
group together machines, which are assigned to identical seasonal-
ity categories, and investigate their common modalities. The fluc-
tuations of data can not only be used to boost a forecast method, 
but are analyzed for their influence on product quality and if mea-
sures can be taken to counteract this fluctuation.

4. Method

4.1. Adaptive model

For the model adaptability we use a classification of the un-
derlying machine and its behaviour. The classification is used to 
sort the data streams for each machine to the correct prediction 
method. The classes are created using the rate of the seasonality 
for each machine, stemming from wear of long time usage and 
surroundings as shown in Fig. 1.

Before detecting the seasonality of the time series, we pre-
process the data. For each value of the time series we calculate 
the mean absolute deviation (MAD) [26] and the median x of the 
data for n values.

M AD = 1/n
∑

|xi − x| (1)

A value is defined as a strong outlier if it differs 3 MAD from 
the median, as it was shown to be a robust method in related 
work [22]. The outlier is replaced by the median of the time se-
ries. We decided to use this statistical method instead of a machine 
learning approach, as it allows us to clean the data on premise 
using a micro controller. For further applications on a centralized 
system with more computing capabilities we can look to use an 
auto encoder to detect outliers of the data. For the resulting time 
series with removed outliers we calculate the autocorrelation co-
efficient. The value with lag k is calculated by the autocovariance 
function divided by the variance function for the sample Yi [27]:

rk =
∑N−k

i=1 (Yi − Y )(Yi+k − Y )∑N
i=1(Yi − Y )2

(2)

We calculate an autocorrelation on each data stream. The local 
maxima of each autocorrelation are calculated. We compare the 
local maxima to the number of daily samples to determine to sea-
sonality of the underlying time series. The data we observe does 
not provide a uniform sampling frequency. The time each work 
piece needs for productions differs for every type and is influenced 
by necessary stops for refilling and reparation.

The expected seasonality is calculated. We determine the num-
ber of average daily and yearly measurement points and the cor-
rect location of the peaks in the autocorrelation function when a 
seasonality exists. We can visualize the results by comparing the 
actual numbers of samples for a day and the n-th peaks of the au-
tocorrelation function in Fig. 3. For the autocorrelation coefficient 
in Fig. 3, we had an expected seasonality of 62. The daily seasonal-
ity was obtained by calculating the average of the daily work-piece 
count. The autocorrelation of the function had its local maxima at 
0, 61, 123, 186 and 244. The value at the position 0 can be ig-
4

Fig. 3. The top Graphic shows a time series which can be identified as daily sea-
sonal by visual inspection. Its corresponding autocorrelation function shows peaks 
at clear intervals. The bottom graphic is not influenced by seasonality. Its corre-
sponding autocorrelation function does not show evenly distributed peaks.

nored, since it is the correlation of the time series to itself without 
a shift and is a maximum in any autocorrelation. For each further 
value we can divide the peak by its number. For the time series, 
we get 61, 61.5, 62 and 61. We can compare the expected season-
ality and the position of the peaks and use the values as features 
for a classification. The seasonality classes are:

• No seasonality: No seasonality or seasonality not matching the 
defined classes, such as weekly or bi-weekly is detected. These 
changes can mostly attribute to a trend instead of a seasonality 
over the production time of a single product type.

• Seasonality: We can detect a data fluctuation over different 
time frames. The peaks for the maxima and minima are at the 
same time for every day. Daily influences, such as temperature, 
humidity or the workers shift can influence the production 
process.

Using the results, we can use the features of the measured season-
ality and the expected seasonality to classify the seasonality type 
of the time series. In this work we focus on the detection of the 
daily seasonality for the forecast. For a yearly seasonality detection, 
long time data over multiple production intervals for an identical 
product type are observed. The average values for the weekly pro-
duction intervals over multiple months and years are used with 
an identical method, as is shown for the daily seasonality in this 
work.

For multiple time series we get the following matrix for a clas-
sification of the daily seasonality for 5 randomly selected time 
series:
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1st 2nd 3rd Expected⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

61 123 186 62
77 153 236 79
75 174 216 72
38 91 192 74

138 243 368 122

(3)

Each row represents the 1st maximum, 2nd maximum, 3rd max-
imum and expected seasonality for a single time series. The ex-
pected seasonality is the average number of daily produced work-
pieces. The first 3 maxima were selected as most product types get 
produced for a minimum of 3 days. For comparability of each time 
series and classification we divide the maxima by the expected 
seasonality to get the matrix:

1st/Expected 2nd/Expected 3rd/Expected⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

0.98 1.98 3
0.97 1.94 2.99
1.04 2.42 3
0.51 1.23 2.59
1.13 1.99 3.02

(4)

For the prototype study, labels are applied for a train data set to 
train a selected classification method. For the train data set we can 
manually label the matrix as seasonal or non-seasonal by optical 
inspection. For the presented matrix, the labels can be assigned as 
follows:

1st/Expected 2nd/Expected 3rd/Expected Seasonality⎛
⎜⎜⎝

⎞
⎟⎟⎠

0.98 1.98 3 daily
0.97 1.94 2.99 daily
1.04 2.42 3 daily
0.51 1.23 2.59 no
1.13 1.99 3.02 daily

(5)

If the time series is classified as a daily seasonality, a model 
with a seasonal component will be selected. A partial auto-
correlation function (PACF) and an auto-correlation function (ACF) 
are used to determine the order of the components of the predic-
tion model with a seasonal component.

4.2. Seasonality detection and classification

As an initial approach we apply different clustering algorithms 
to create seasonality classes. This method is based on the idea, that 
the data provided by the autocorrelation should be separable into 
different classes. Fluctuations over different time periods should be 
sorted into different classes. From the clustering we get the num-
ber of classes and an initial labelling for the classification process. 
Classification methods are compared using the classes defined by 
the clustering to classify new segments. We extend our simplified 
approach by using a row-wise normalisation of the Array (3) and 
using all maxima detected divided by the number of appearance. 
The resulting matrix is given as:

Expected 1st 2nd 3rd ... nth⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

1.01 0.99 0.99 1.01 ... x.xx
1.02 0.99 0.98 1.01 ... x.xx
0.94 0.98 1.14 0.94 ... x.xx
1.34 0.68 0.82 1.16 ... x.xx
0.97 1.09 0.96 0.97 ... x.xx

(6)
5

We evaluate the usage of two different feature sets for the clas-
sification methods. The first feature set includes all columns of 
Array (6) as features. The second feature set is calculated from the 
values of Array (6) to get a feature vector with a fixed length of 
three. The features of this vector are the expected seasonality, the 
calculated mean and variance, of all rows from the 1st to the nth 
maxima. For both datasets we apply identical clustering methods.
For the clustering we compare the k-means, Agglomerative Clus-
tering and DBSCAN method of the scikit-learn python library [28]. 
We apply the k-means method on the assumption of the seasonal-
ity classes: daily, yearly and neither seasonality which results in a 
three cluster setup. We also apply 4, 5 and 6 clusters and inspect 
the results for each cluster and their attributes. The Agglomera-
tive Clustering and DBSCAN have the advantage of supporting an 
unknown number of classes. We optimize the DBSCAN function 
to have the least amount of outliers, while obtaining a reasonable 
amount of classes by tuning the distance parameter. Non-seasonal 
behaviour should be detected as outliers, since the noisy data will 
result in random maxima inside the autocorrelation.

Commonly used approaches were selected, to show the pos-
sibility of an automatic machine learning approach. We used a 
support vector machine [29] and a decision tree [30] for the classi-
fication of the clusters after the decision of the number of classes 
is made by the clustering. We use the classifier to classify each 
new segment in the live production process. Especially the decision 
tree was selected, as a system for this basic approach is similar to 
manually programmed if statements. This allowed us to inspect 
the results of data segments, which were predicted worse, than 
the average segment. The goal was to find an explanation why the 
forecast for specific product types and machine combinations was 
incorrect. If the prediction was worse due to a wrong classification 
of the seasonality, we could inspect the decision tree, which fea-
tures, and values led to a wrong classification. This aspect of the 
process was done due to wishes of management, to communicate 
to engineering, which product types would not follow one of the 
described patterns.

4.3. Prediction model

If we aim to include seasonal trends when found, we can use 
the Holt-Winters method. We focus on the ARIMA, Exponential 
Smoothing and Holt-Winters in detail in our previous work [3]. 
The model allows observing seasonal trends inside the data for the 
forecast. For data without a seasonality we will use double ex-
ponential smoothing and for data only defined by a level we can 
apply simple exponential smoothing. The best forecast method for 
the underlying data stream is used as a result in values for the next 
upcoming pieces. After applying the best forecast method to get a 
forecast, we need to apply the uncertainty on the forecast values. 
The variance of the data is considered for our forecast. We calcu-
late the standard deviation of the train data as a benchmark. For 
comparison to this benchmark we calculate the distance between 
the positive and negative thresholds of the system and the fore-
cast obtained by the Exponential Smoothing model. We calculate 
an array that includes the distance for each sample of the forecast 
to each desired threshold. The array for the distance to the nega-
tive threshold is calculated by subtracting the prediction from the 
negative threshold value. For the positive distance we subtract the 
positive threshold value by the prediction. We visualise the calcu-
lation for the difference as an example in Fig. 4. Let forecast(i,n)
denote the expected number of erroneous work pieces between 
times i and i+n. Let probability(i) denote the probability that the 
work piece at time i is erroneous. Assuming independence of er-
rors, we get the equation:
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Fig. 4. A generated time series and its linear forecast. For each sample the value of the positive tolerance limit is subtracted from the linear forecast. For this example with 
the parameter n set to 5 to get the probability of the 6 upcoming work pieces i to i+5 we would obtain an array containing the values -0.4, -0.3, -0.1, 0.1, 0.3, 0.4. For the 
distance to the negative threshold we get the values -2, -2.1, ..., -2.7, -2.8. For every value we can use the distance to the tolerance line to calculate the probability of lying 
inside the tolerance lines. The calculation for the probability of being outside the positive tolerance is shown in Table 1. We did not include the negative tolerance in the 
presented table, as the probability of the forecast being below the negative tolerance value within a normal distribution is zero for all points within the forecast.
Table 1
We can get the distance for the next n samples of the forecast in Fig. 4. This dis-
tance is divided by the standard deviation of 2.7 to get the distance in standard 
deviations of for each point from the threshold. For the presented example we show 
the distance to the positive threshold, as the probability calculation for crossing the 
negative threshold was 0 for all values.

Distance -0.4 -0.3 -0.1 0.1 0.3 0.4

Distance/Standard Deviation -1.5 -1.1 -0.4 0.4 1.1 1.5
Probability 7% 14% 34% 66% 86% 93%

f orecast(i,n) = probability(i) + probability(i + 1) + ...

+ probability(i + n) (7)

For each distance value we can calculate the amount of n standard 
deviations below the critical threshold. We calculate the standard 
deviation of the n preceding values of the forecast. Before cal-
culating the standard deviation, we make the data stationary by 
differentiation. For the visualized data of Fig. 4 we get a standard 
deviation of 0.27. We divide the calculated distance of the positive 
and negative array by the standard deviation. We can derive the 
probability of each sample lying inside or outside the threshold by 
using the normal distribution. To assume normal distribution, we 
used a Shapiro Wilk test to proof this assumption [31].
For each sample of the prediction we can get the probability of 
error by using the normal distribution of the series and the po-
sition of the sample within the distribution. We get the table of 
probability of each point in the prediction of Fig. 4 by dividing 
by the standard deviation and looking up in a normal distribu-
tion table as can be seen in Table 1. We can define the amount 
of values that the system needs to consider in the forecast. We 
can select the forecast window manually for the prediction of 
a single value or extend to multiple values. For the decision of 
the time frame a fixed value of work pieces or the number of 
work pieces matching a fixed time frame can be used. The prob-
abilities for all values of the probability row of the Table 1 are 
summed up. For the probabilities of Table 1 the expected num-
ber of faulty work pieces is calculated by adding the probabilities 
0.07 + 0.14 + 0.34 + 0.66 + 0.86 + 0.93. For this segment of 6 up-
coming work pieces, 3 are expected to be faulty. We can rank each 
production line by its number of upcoming faulty work pieces. This 
ranking supports short time maintenance decisions, as the more 
critical lines get attention first.
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For the evaluation of the system, we will make a comparison 
between the predicted amount of errors and the actual detected 
errors in the system. We need to exclude single errors since the 
system is designed to detect continuous errors and there is no 
way to reliably predict the measurement or process errors. The 
measurement and process errors can be caused by already slightly 
broken parts being processed by the machine.

5. Pilot study and data set

We collected a data set of 48 production machines with thresh-
old monitored time series to apply the forecast. In a time frame of 
five years we collected 10137 segments which can be seen in Fig. 2
and 3. To test the proposed setup we implemented a data selection 
and prediction setup to compare the different forecast methods 
to each other. The data selected are the 100 most common prod-
uct types. For each product type 20 segments were selected, each 
inheriting 3 to 7 days of continuous production. For the implemen-
tation of the ARIMA, Holt and Holt-Winters exponential smoothing 
approach we use the python library statsmodels [32]. We iterate 
over each segment to forecast the next segment of 20 work pieces 
depending on all earlier values of the segment. For each segment 
we calculate the mean squared error to evaluate the forecast. For 
each forecast model we get 100 times 20 mean squared error mea-
surements to compare to each other for the best possible method.

To select workpieces which show a daily seasonality, where the 
method using the season and no trend produced best results, we 
use the expected seasonality and the n first maxima of the median 
filtered autocorrelation. These values are used for the clustering 
and classification. We separated the work-pieces fragments into a 
test data set and a training data set. The training data set con-
sists of 500 random fragments and the test data set consists of the 
other 1500 fragments. The 500 segments of the training set were 
labelled according to their best performing method and a classifier 
was trained with the features expected seasonality, maxima one, 
maxima two, maxima three and the label method.

For the live production forecast we use the forecast and ap-
ply a distribution to every sample measured, as shown in Fig. 4. 
If the probability for errors surpasses a certain threshold, as for 
example 25% errors in the upcoming 20 workpieces, an alarm is 
sent out. This threshold can be changed freely by the recipients of 
the alarm and was selected individually, as technical staff wanted 
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Fig. 5. Number of classes detected by Agglomerative Clustering depending on dis-
tance threshold and corresponding dendogram.

Table 2
Accuracy of Decision Tree and Support Vector Machine.

Number of classes 2 3 6

Support Vector Machine (Maxima) 0.97 0.94 0.90
Decision Tree (Maxima) 0.99 0.96 0.94
Support Vector Machine (Statistical) 0.93 0.91 0.86
Decision Tree (Statistical) 0.95 0.93 0.91

to get informed on more nuanced changes, such as people on the 
shop floor. The implemented system is live as today and used by 
production to counteract erroneous machine behaviour and give a 
better understanding of difficult product types.

6. Results

6.1. Clustering and classification

For the agglomerative clustering we evaluated the distance 
threshold for the merging of clusters. Depending on the thresh-
old we get a different amount of classes. Using a low threshold 
results in multiple classes up to the number of samples in classes 
for using a threshold close to zero. The dendogram in Fig. 5 was 
created using the ward linkage. In the dendogramm the biggest 
range is between three clusters and two clusters with a range of 7 
and between two clusters and one cluster with a range of 6. The 
next consistent number of clusters are six clusters with a range 
of 5 and four clusters with a range of 2. For the DBSCAN method 
we compared the change of the distance metric to the number of 
outliers the system detects in Fig. 6. The number of classes is un-
stable with a high amount of outliers until we get 3 clusters and 
less than 10 percent of outliers. The method then stays stable on 
2 clusters.

We applied the plausible cluster numbers 2, 3 and 6 obtained 
by the agglomerative clustering and DBSCAN using the kmeans 
clustering. The kmeans clustering resulted in similar clusters as the 
Agglomerative clustering. For the classification we used the cluster 
sizes 2, 3 and 6, with the classes assigned by the Agglomerative 
clustering in Table 2. The Decision Tree classification outperformed 
the support vector machine for every cluster number. For the sup-
port vector machine we get an accuracy of 0.97, 0.94 and 0.90. The 
Table 3
RMSE comparison of each method.

LSTM DNN Season:No
Trend:No

Se
Tr

RMSE 0.047 0.049 0.053 0.0
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Fig. 6. Number of classes detected by DBSCAN depending on distance threshold.

Decision tree showed an accuracy of 0.99, 0.96 and 0.94. This was 
done using each maxima and the expected seasonality as feature. 
Using the statistical features mean and variance we achieve lower 
results.

6.2. Forecast

To evaluate the results of the prediction we use the RMSE, as 
we filter out outliers earlier which would strongly influence RMSE 
results. For all 100 work-piece types 96 showed the lowest RMSE 
for above 18 segments for a single selected method. Using only a 
seasonal parameter performed best for 42 types, using neither a 
seasonal nor a trend parameter for 27 types, using only a trend 
parameter for 16 types and a seasonal and a trend parameter for 
11 types. The remaining workpieces showed a mixture of models 
as the best performing model for different segments. The overall 
performance for each work piece can be maximized by selecting 
the correct model before the forecast. For each single method the 
average error for all workpieces can be compared in Table 3. The 
DNN performs similar to the best exponential smoothing config-
urations with an RMSE of 0.049. The best single method for the 
underlying data set is the LSTM with an RMSE of 0.047. The mix-
ture model performs 4.2% better than each single model with an 
RMSE of 0.045.
We can use the seasonality gained by the autocorrelation to select 
the correct method for every work-piece type and machine combi-
nation to achieve the best possible RMSE as can be seen in Table 3. 
By always selecting the best method during the online process we 
get the best possible performance for the overall system.

7. Discussion

An important idea of the clustering of the seasonality is to pro-
vide expert information in the first step. By recognizing big range 
cluster sizes, these cluster sizes can be analysed. The direct deci-
sion without manual assistance or analysis by a human is to take 
the cluster number with the biggest decision threshold range by 
the agglomerative clustering for further analysis. Further, the anal-
ysis of the cluster numbers can also give additional insight into the 
data. The biggest difference between the dominant cluster sizes 3 
and 6 for the manually labelled dataset showed in Fig. 7, that the 
ason:Yes
end:No

Season:No
Trend:Yes

Season:Yes
Trend:Yes

Mixture 
Model

49 0.049 0.051 0.045
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Fig. 7. Separability of classes depending on the selection. The Figure in the top shows the separation of the clusters using six and on the bottom using three, as pre-defined 
number of clusters. The classes two and three merge into the cluster one in the bottom. We selected the mean, average day and variance for an easier visualisation of 3 
features instead of the average day length and 1st to nth maxima.
8
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outcome of the three clusters could be labelled as daily seasonal-
ity, intra daily seasonality and no seasonality.

For the further forecast this detection would be feasible, as it 
does not matter for methods such as the Holt-Winters if the given 
frequency is daily or intra daily, as long as the correct frequency 
is selected. For an expert this information can provide valuable 
information. In a factory setting the knowledge about intra day 
seasonality can give additional information. The behaviour of dif-
ferent working shifts or underlying production processes, such as 
refill or maintenance cycles can be analysed. The applied cluster 
number for the further analysis and forecast can be decided by the 
department or factory wide by experts or automatically selected by 
a method finding the biggest distance in the dendogram in Fig. 5
between cluster sizes.

A challenge of this method is the evaluation of the clustering. 
The initial assessment and hand labelling of the data segments as-
sumed only the daily seasonality and sorted the data into daily 
seasonality, no pattern and trend. Therefore we can only compare 
to this ground truth. The problem with re labelling the data for the 
2 and 6 cluster setup is, that the expert would be biased, since we 
would create a ground truth specific for a result.

8. Conclusion and future work

Identical setups of production lines behave differently depend-
ing on the surroundings of every line. A forecast was used to esti-
mate the amount of upcoming erroneous workpieces. The adaptive 
selection of the correct components and models for the forecast 
method has boosted the overall accuracy of the prediction and 
outperforms each single selected best model. The models only ap-
plying the trend or the season also outperformed the setup using 
both at the same time in our production setup. The dynamic model 
selection provides the ideal model for the observed online system 
and can be introduced to new types or production lines and at-
tentively select the correct forecast model. We extend the setup 
we use on to different use cases, as we can access an array of 
data inside our network, where this kind of forecast is poten-
tially useful. The strength of the application is the capability to 
extend to data on different application fields, such as machine 
temperature, water pressure and energy consumption. Using the 
detected seasonality each production cycle for a workpiece can be 
classified to a fitting forecast model. The information about the 
seasonality can be used by experts to analyze why the different 
production lines behave as they do. First inspections lead to influ-
ence factors, such as a location close to gateways or exposure to 
sunlight. The clustering of classes is extended by a classification 
model for the known classes from the ground truth. The classifi-
cation, clustering, outlier detection and forecast methods can be 
adapted and exchanged and tested in future work, as we used ba-
sic statistical approaches for this work. The accuracy of the model 
classification is tested for different machine learning methods and 
changed features, such as the usage of more maxima or including 
the minima of the autocorrelation. The adaptive selection of pre-
diction methods was implemented on different applications and 
use cases with or without a threshold-based system. We see our 
system as a step forward towards an autonomic intelligent system 
that uses dynamically configured recognition processes based on 
trend and seasonality analysis to raise the overall recognition per-
formance.

Future applications can combine our previous approach [2] to 
detect impending errors which need to be fixed immediately and 
the approach of this work to support maintenance decisions de-
pending on the necessity for each machine.
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