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Abstract—Mixed production line setups are common in real
world scenarios but are sparsely covered by current research in
anomaly detection. A mixed production line setup poses several
challenges and properties that make using anomaly detection
more complex compared to monotonous production processes.
We consider a high variation in the produced products, diluted
temporal dependencies, imbalance in the frequency of product
types and sensor measurements differing based on the produced
product type. We gather contextual information using the OPC
UA standard and extract information such as running program
name.

In this work we adapt and evaluate common anomaly detection
methods to such a scenario. By building ensembles of anomaly
detectors, we account for different setups. Each single work-piece
gets evaluated for anomalous behaviour. We evaluate the anomaly
detection by using data from a mixed production setup in the
automotive domain. The context based approach is compared to
a sliding window approach, which we use as a baseline.

The results highlight that our product type-based approach
shows a higher precision and recall for all applied detection
techniques, by utilizing contextual information. Qur experiments
additionally show that in the selected industrial case study our
approach achieves good results even when only limited data per
product type is available.

Index Terms—data mining, real-time system, maintenance
prediction, adaptive network, reliability evaluation, sustainability

I. INTRODUCTION

In modern production facilities individual type customiza-
tion and individualization has become an important aspect
in production lines. It is common in the food and semi-
conductor industry that the production process is performed
in batch production [1]. Due to the mass-customization these
batch sizes are shrinking in size, often down to batch size
one [2]. This mixture of product types and change from a
single repeating process also challenges maintenance predic-
tion methods. Conventional methods, such as using thresholds
to raise machine alarms are becoming harder to implement.
Different product types need to be reassessed manually for
their limits, what can be a costly process for a small number
of produced pieces. Performing updates to the machine settings
and maintenance too frequently can result in high cost, high
consumption of spare parts and loss of overall equipment
effectiveness (OEE) [3].
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Predictive maintenance can be performed in multiple ways:
optimizing the scheduling policy, predicting the remaining
useful life of machines, and monitoring the condition of
the machinery [4]. Machine learning systems have opened
new opportunities to boost and outperform current predictive
systems. This work evaluates a machine’s condition by mon-
itoring the deviation of each work piece from the machine’s
previous behavior. Anomaly detection is successfully applied
by researchers in the industrial domain [5], [6]. We apply
this method to learn a description of the regular operation of
the machinery. The learned model can detect deviations from
the expected operation. In previous [7] we used an outlier
detection Al based system for the prediction of maintenance.
This approach used a feature-based drift model to determine
the deviation of each workpiece from its predecessor. It could
detect multiple machine errors around ten minutes in advance.
This is a short time to take preemptive steps and the goal is
to detect more detailed changes in the signal for an earlier
detection. Therefore, we apply more sensitive methods for the
monitoring of a long-time system deviation.

Often methods for the detection of anomalies inside pro-
cesses are used on a continuous data stream without type in-
formation and will detect anomalies on product type switches.
Information about the product mix can be used for an easier
windowing approach which is not used for many methods.
Instead of a fixed window each product type can be used
as window. We propose and implement an anomaly detection
applicable to production lines with unknown dependencies.
We compare the results for commonly used anomaly detection
methods One-Class Support Vector Machine [8], Isolation
Forest [9] and Auto Encoder [10]. We analyze the amount of
data the learning approach needs for sufficient accuracy. For
the parameter tuning and algorithm setup a probabilistic model
is used to weight false positives and negatives to maximize an
underlying cost function.

We propose a self-configuring distributed system, which
is capable to connect, analyze and make a prediction for a
wide array of data sources. An information model is built for
the prediction setup supplying context information to decide
between anomaly detection algorithms and configurations.
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II. RELATED WORK

Anomaly detection is already applied in multiple domains.
An example for such applications is fraud detection in the
insurance [11] and finance [12] domains. As in the industrial
domain, a description of non-anomalous transactions can be
learned using anomaly detection techniques. Training a super-
vised classifier using previous anomalous transactions limits
the model to anomalies that are like the observed ones. Bolton
et al. [13] propose performing fraud detection by grouping
accounts that perform similar transactions into peer groups.
With these groups’ anomaly detection can be performed with
respect to the corresponding peer group. Therefore, anomaly
detection only considers similar operation. By performing
anomaly detection on the specific context more fine-grained
anomalies can be found.

Similar approaches have been done in the semiconductor
industry. In this domain the production process is often ex-
ceedingly long. Identifying failures early in the process of pro-
ducing a microchip can drastically increase the productivity.
Puggini et al. [14] and Susto et al. [15] use the Isolation Forest
technique for anomaly detection in the plasma etching process
of silicon wafers. Susto et al. [16] also compare different
outlier detection such as Local Outlier Factor and Angle Based
Outlier Detection to identify anomalies in the semiconductor
fabrication process. Historic data is used to learn thresholds
for non-anomalous operation.

Machine learning techniques are becoming increasingly
popular for the task of anomaly detection in the industrial and
technical domain [17]. Su et al. [18] use the One-class SVM
technique to detect anomalies in temperature readings obtained
by sensors. To capture contextual information, they use a
sliding window that contains multiple temperature readings.
Additionally, they use the K-Nearest Neighbors technique to
find anomalies that are like the one that is detected. Therefore,
they also perform classification on the type of error that occurs.

Liu et al. [5] propose using an Autoencoder for a man-
ufacturing setup. They consider temporal co-occurrence of
different (anomalous) events to refine the neural network.
With this co-occurrence information they reduce the neural
network to only consider interactions that are present in
the observed data. Additionally, Autoencoders are used for
applications such as sound machines [6], wind turbines and
ozone levels. Different versions of the Autoencoder are used
for these setups, such as a Denoising Autoencoders [19] and a
Variational Autoencoders [20]. The common advantage these
setups have is a uniform signal since the observed processes
should remain identical.

Anomalies can also be used to estimate the remaining
useful life of machines and devices. Kammerer et al. [21] use
matrix distance profiling of time series segments to identify
the number of emerging patterns. Their data consists of a
single run to failure. In their study they are able to detect
a high number of emerging patterns starting around 13 hours
before a defect. The number of emerging patterns also has
a peak 9-8 hours before the defect. After this the number

rapidly decreases as the defect draws closer. Jin et al. [22]
identify anomalies by setting thresholds on health indicators.
As health indicators they use the vibrations of the bearing. The
thresholds are determined by a statistical analysis of historic
data. The remaining life is only predicted once an anomaly
is detected, otherwise their approach refrains from making a
prediction.

Cheng et al. [23] propose monitoring measurements against
a health baseline to detect anomalies. Anomalies are identified
by performing a sequential probability ratio test using the
current measurement and the health baseline. Once an anomaly
is detected the features that are responsible for the deviation
should be isolated. They propose using techniques such as
PCA to isolate the features. Using the responsible features, a
definition of the failure is calculated by using physical models
and regression can be performed to predict the future values
of the features.

We need an evaluation method for the anomaly detection.
Lavin et al. [24] propose an evaluation method based on
windows around ground truth anomalies and provide rewards
for earlier detection. Thus, this method is capable of han-
dling scenarios where the exact time for the occurrence of
anomalous behaviour is unclear. Because the scale of this
score depends on the concrete problem it is applied to, we
use the normalization to a common scale from —oo to 100.
A normalized score of 100 would mean that only perfect
detections are made. Further, a score lower than 0 means
that the detection is not better than abstaining from making
predictions with respect to the used profile. Their rating
method allows the usage of different profiles. We will use their
profiles low false positives(low FP), low false negatives(low
FN) and standard for the evaluation of our setup.

ITII. SYSTEM STATE AND GOAL

We observe industrial production lines using an OPC UA
connection to read data. This sensor data needs to be live
monitored for data deviation and anomalies. In a first setup
we tried to use previously proposed methods on our sensor
data. We choose sliding windows as they are commonly used
for anomaly detection with time series data [19] [25] [26] [27],
while also providing reliable results. For each data stream
gathered by the sensors we used the proposed methods but
could not reach sufficient results for a long-time prediction.
We extended the simple data drift from our previous work [7]
by applying the anomaly detection machine learning methods
of the Autoencoder, one-class SVM and Isolation Forest. The
best performing feature for every method can be seen in Table I
in the baseline columns. The problem with this method is
the high variability between each product type produced in
the machine we observe. The sliding window picks up these
changes and anomalies will be detected, which do not reflect
the machine’s health. We either get no detections in large
portions of the data due to the big mixture of data values and
ranges of the different types or get a high number of detections
if we detect the data variance as anomalies.
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Fig. 1. The pipeline used for the error prediction of each individual machine.

We conduct a pilot study to gather measurements between
July 2019 and May 2020. We aim to build up a system as
shown in Fig. 1. In this work we present results for a single
machine to demonstrate the process steps. The framework
created needs to work for a big array of machines. There
should be no human interaction with the process beyond
the first step of network connection and the last step of
interpreting the warning sent by the system. The framework
needs to discover the machine endpoints and monitor the
data. Each product type produced in the machine needs to
be recognized and analyzed individually and an alarm should
be triggered if an accumulation of errors is found in a given
time frame. We designed an information model depending on
each single work piece as schematically presented in Fig. 2
to capture contextual information necessary to dynamically
build and adapt the processing chains. Each component of
the framework, from preprocessing to the alert message is
dependent on its context information, obtained by the machine
and product information. The anomaly model is influenced
by setups in the framework, such as the focus on low false
positives or low false negatives, the seasonality [28] of the
time series, which machine and which product were measured.
This information for the machine and products is supplied by
the communication protocol. Depending on the result of the
anomaly model and its predicted failure probability a warning
is sent by the framework. In practice, this system is used
in a testing phase, where the time series with its number of
anomalies can be observed by the foreman. For strong peaks,
a notification is sent out.

IV. METHOD
A. Data Collection

In the previous work we obtained the sensor data by using
the OPC UA standard. We treated every time series of any
machine identical and used a checksum to transfer string data
to numerical values for feature extraction. This was done
to keep the system on a zero manual configuration level
and make analysis possible without human interaction. We
further analyzed a machine range of 28 different machine types
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Fig. 2. The framework is autonomously adapted for each analyzed workpiece,
depending on contextual information (e.g., machine, product type, manual
settings, etc.) The knowledge is preserved in form of an Ontology to enable
semantic querying and reasoning.
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by three different suppliers controlled by a programmable
logic controller (PLC). On any machine we could at a bare
minimum of additional information get the program name of
the currently running program. As this information is available
on any machine observed, we can use this information in
a setup without losing the adaptability component of our
system. When implemented into a framework, the program
name information is used independently of a machine. This
aspect of the system is essential for our analysis of differing
product types and if we can boost the analysis by separating
the data stream by pieces. We can use every single work
piece as a semantic segment for the analysis pipeline shown in
Fig. 3. In the first step we recognize the product type for each
work piece using the program name. For each product type
the machine learning model needs a separate training set. We
will evaluate the number of instances the different machine
learning models need to achieve viable results. If a product
type does not have enough instances, the work piece is used
for the training set, otherwise it is classified as anomalous or
non-anomalous.

B. Preprocesing

The preprocessing we employ for the training and validation
data consists of steps for cleaning, normalization and resam-

522



PerFlow 2021: International Workshop on Pervasive Information Flow

Semantic
information
Product
Type?

/ N\

Enough
Instances?
Product A

lNo lYes

Predict

=Ll 1

Time Series|

Fig. 3. Procedure for each work piece in a live production environment.
Each data segment gets analyzed by its semantic information (schematically
presented in Fig. 2) of the product type. The time series gets used for either
(i) only learning or (ii) for learning and prediction of the anomaly detection,
depending on a sufficient training data size.

pling. The cleaning and resampling steps are optional and
depend on the characteristics of the input data. After cleaning
the data, we normalize each feature to a value range between
-1 and 1 by dividing them by their respective maximum. Each
product type is normalized independently as the value range
can differ between the various types. The product types can
be separated by their program name which is read from the
machine. The sensor measurements can also have a varying
sampling rate. A varying sampling rate can occur within the
measurements of a single feature or across multiple features.
Differences can also arise in the duration of the measurements.
This results in an inconsistent length of the semantic segments.
The anomaly detection techniques we use require inputs of
equal length. To this end, we perform mean downsampling
to a fixed sampling rate. Each semantic segment is divided
into non-overlapping windows with a duration s. The mean
of all values within a window is calculated. This mean
becomes the measured value at the start of the window. After
downsampling each semantic segment has the same sampling
rate. Downsampling is used to achieve equal length for all
segments with the same duration while being computationally
inexpensive. It is also used to make the data more comparable
and supports our goal to connect new machines setup free. The
preprocessed time series is directly used as a feature vector
without feature extraction.

C. Anomaly Detection

As laid out earlier each training sample is a semantic
segment that represents the processing of a product. The exact
product type is known for each of these products. For our
approach we first segregate the learning set by the respective
product types. As shown in the schema 2, the learning set
then consists of a set for each product type. Each of these
sets is used to train an individual model. So, we enforce that
only a representation of the corresponding product type is
learned. By using the semantic segments, we also achieve
that each sample represents the same actions performed by

the machine. The result of the training is an ensemble of
models for the different product types. To build those models
common anomaly detection methods are used. We focus on
One-Class Support Vector Machine [8], Isolation Forest [9]
and Auto Encoder [10]. Those methods will be adapted to
fit the use case by performing cross-validation and parameter
tuning. We use hold-out validation as the cross-validation
method as it represents the case of ongoing production. The
models can be trained by optimizing for Precision, Recall and
in addition for evaluation methods focusing on either a low
number of false positives or false negatives [24]. The approach
is tuned using the standard profile of the evaluation metric in
our experiments. This provides a balance between low false
positives and negatives.

D. Anomaly Fusion

As we use different anomaly detection methods, we select
the best performing method depending on the context informa-
tion. Additionally, we can perform a fusion of the results for all
possible combinations. We can especially combine methods,
which need a small number of training samples to reach their
highest accuracy with models, which need more instances, but
perform better with enough instances. As a simple approach
for this work we use a majority vote. In the online setting each
method is selected, by the results of the previous detection’s
score, for the different methods.

V. DATA

We collected the data of multiple production lines and
different machine types. For the learning set we use the
measurements of the products produced from July 2019 to
December 2019. The validation set consists of products from
January 2020 to March 2020. A relatively long interval for
the validation set is chosen as the production in spring 2020
is decreased due to environmental factors. The measurements
inherit 55 different product types. Product types are similar in
weight and shape, but differ in features, such as design and
number and position of drilled holes. During that period, the
processing of 85000 products is measured. The sensor system
aims at providing measurements every 30 milliseconds, for an
average of 15 endpoints for each machine. However, the actual
period between sensor measurements is variable. This is due
to latency and limited throughput of the industrial network.
Because of network and further sensor problems it can also
occur that for a product only zero values are measured. We
have to clear these values in the pre-processing. Additionally,
measurements of a product can be aborted before it is fully
processed. Likewise, it can also occur that the completion of
a product is not recognized. In this case measurements of
multiple products are accounted to one product. This results
in a loss of 2897 product samples, which is 3.4 percent of all
products produced. The ground truth data consists of detected
machine defects. Therefore, it contains labels for events when
a machine transitions into a state that requires repair or is
no longer operational. We got 14 critical errors, which is
attributed to a breaking of machine parts and 82 minor errors.
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TABLE I
SCORES OF THE ANOMALY DETECTION USING BASELINE AND THE
APPROACH USING THE CONTEXT INFORMATION.

One-Class SVM | Autoencoder Isolation Forest |Majority Vote
. Context . Context . Context | Context
Baseline Baseline Baseline
Info Info Info Info
Standard |8.24 46.97 1299 4543 |[8.64 27.73 |46.52
Low EN [17.44  50.37 |20.60 51.74 |17.70  39.97 |50.07
Low FP |-8.36 41.61 |1.12 3392 |-7.57 9.20 42.75
Precision|0.20 0.57 0.13 0.34 0.19 0.26 0.59
Recall {0.35 0.57 0.35 0.64 0.35 0.64 0.57
VI. RESULTS

Table I shows the scores of the anomaly detection. The prod-
uct type-based approach in combination with One-Class SVM
has the highest scores for the Standard and Low False Positives
profiles. The One-Class SVM detects slightly less defects than
the Autoencoder but is more accurate. In terms of the Low
False Negatives profile, the product type-based approach with
Autoencoder provides a higher score. The recall also shows
this. The Autoencoder also has a Standard score that is close
to the One-Class SVM. It has a lower Low False Positives
score. The product type-based approach with Isolation Forest
has lower scores than the other two. The scores range from
10 to 20 points less than the other two approaches. The recall
is equal to the Autoencoder. The applied Majority vote for
all anomaly detection methods results in a higher precision of
0.59 but a lower recall of 0.57. The lower false positive score
also outmatches each single method with a score of 42.75.
The median distance of these anomalies to the corresponding
upcoming error is 7.5 hours, while the distance of the closest
25% is less than 45 minutes. We evaluated the results for both
the baseline and the product type-based approach for the three
anomaly detection techniques previously presented. We used
the presented month of April and May for the Evaluation. We
only present April, as there were no errors in the machine in
May and the anomaly detection did not detect any anomalies
during that month.

We evaluated the necessary training set size to achieve the
projected results. For the Autoencoder we reach a plateau of
only marginal improvements at a training set size of around
430 samples per product type. The One-Class SVM reaches
the point of marginal improvements at around 450 samples.
While the One-Class SVM needs more samples to reach that
point, it performs better than the Autoencoder at lower training
set sizes until around 300 samples for a product type in
average. The Isolation Forest technique differs from the other
two techniques. It has high average scores even with smaller
training set sizes close to zero. With an increasing training set
size above 250 samples, the average scores decrease for the
Isolation Forest.

VII. DISCUSSION

Both the baseline and the product type-based approach can
find large accumulations of anomalies near many defects. The
product type-based approach finds indicators for up to 64% of
all defects and the baseline up to 42%.

The anomalies accumulate before each failure. On average
50% of the detected anomalies are less than 17 hours away
and the closest 25% anomalies are within a 1.5 hour range
to one of the defects we consider. Therefore, anomalies with
a long distance to defects are sparse and rare. The 50% with
the longest distance to defects also have a mean distance of
4 days to the next three neighboring anomalies on average.
Therefore, large agglomerations of anomalies outside of the
defect windows are rare.

A problem we need to consider is the usage of ground
truth in this field. For an exemplary accumulation of anomalies
without subsequent failure, we inspected the maintenance log
of the machine and were not able to find any significant
entry as to whether these anomalies correspond to. Further
investigation led to a high amount of faulty parts of the product
types in the end control several production steps later, which
were attributed to processes preceding the machine observed
for anomaly detection. Those faulty parts could be the reason
behind the anomalous machine behavior, but they also show
the strong influence of multiple processes onto each other.

The recall, temporal distribution and scores of the evaluation
method way above zero show that we can use anomaly detec-
tion to find early indicators for defects in this experimental
setup. Especially, highly frequent detections of anomalies are
close to defects. Therefore, we can employ anomaly detection
to find indicators for defects in this industrial setup. Both
approaches also have room for improvement in terms of recall.
However, it must be considered that the ground truth also
contains preventive actions for critical defects and human
interaction with the machinery regularly occurs.

The results show that the product type-based approach
already performs well in our industrial setting. This is likely
because only limited variation should occur during regular
operation in an automated industrial process. Therefore, it can
be applied to on-line data in our scenario, as sufficient data
can be obtained in a limited time frame. The usage of context
information and the ability to obtain it from a large array of
machines improves detection results compared to the baseline.
More samples could help to build more robust models with less
false positives for the Autoencoder and SVM. A larger training
set could also help to detect more anomalies in other testing
scenarios, as an over proportional representation of anomalies
and noise in the training set due to an ill-suited collection
period can be reduced. The Isolation Forest performs more
stable for a low number of samples, but is outperformed by
the Autoencoder for a bigger training set. It finds anomalies
by deriving rules to isolate samples in the training set. If the
size of the training set increases, more rules to isolate samples
can be deduced. Therefore, the rule set becomes stricter. This
results in an increasing number of detected anomalies as the
size of the training set increases. We use the detection fusion to
achieve the best possible result for each produced work piece,
by starting the prediction using the Isolation Forest. The first
instances of each type are predicted using the Isolation Forest
and later we switch to the one-class SVM, as their accuracy
starts to outperform the Isolation Forest at a specific point.
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VIII. CONCLUSION AND FUTURE WORK

Our approach can identify big accumulations of anomalies
preceding machine defects. These anomalies are identified as
an indicator of machine defects.

Our designed system works well as an indicator for any
faulty behavior with either the machine or the produced prod-
ucts thus leading to a more sustainable production in general.
All detected accumulations of anomalies were followed by
erroneous machine behavior or multiple work piece defects.
75% of predictions can be made at a minimum of 45 minutes
preceding the error, up to early prediction of several hours. By
combining the different anomaly detection methods, we can
select the best possible method for each work piece during run-
time and recursively evaluate the prediction and dynamically
adapt the used methods for the upcoming work pieces.

Future work has to find a definition of an accumulation of
anomalies and the respective metric. Single anomalies in a
data stream do not necessarily lead to events. Another aspect
is that we did not identify clear patterns for specific defects.
We can predict errors, but it can also result in erroneous
pieces days later in the end control. An expert’s opinion is
essential to look into the alert and identify the error. This is
still helpful, as it reduces the amount of manual inspections,
but we aim to improve the system by means of error iden-
tification. This extends in addition to provide warnings, by
giving alarms with detailed explanations that are especially
useful for inexperienced workers. We are working on using
context information to normalize numeric features for a better
comparability between different product types. This will result
in a more stable monitoring of each machine and bring our
approach closer to work on a low amount of each product type
down to batch size one. We are currently working on finishing
the DataSet and code for publication to allow reproduction of
our results and evaluation algorithms.
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