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Abstract—Indoor Positioning is a crucial topic to provide
autonomous services to people based on their location. Nowadays
dominating positioning systems, like GPS (Global Positioning
System), are designed for outdoor use not applicable for indoor
scenarios as they depend on a direct line of sight to reference
stations. Recent progress in wearable computing peaked in the
promising development of SmartWatches. They are seen as a
successor of the SmartPhone evoking a new era of an always on,
large scale, planet spanning, body sensor network. This work
investigates in the question if SmartWatches are an accurate
and suitable approach for an out of the lab, 24/7, real world
Indoor Positioning System. In utilising Wi-Fi fingerprinting
methodologies in combination with machine learning techniques,
it is shown that state of the art consumer hardware in form of
SmartWatches can be used to shape a cost effective, unobtrusive,
and accurate indoor positioning system.

Keywords—SmartWatches; Realtime Indoor Positioning;
Wearable Computing;

I. INTRODUCTION

Persons’ positions inside buildings deliver highly important
contextual input information for smart services. SmartHomes,
as one application scenario, can use this information to au-
tonomously reduce energy consumption by turning not used
electrical power consumers off [1], [2], [3]. SmartHomes
can utilize the position information to e.g., autonomously
switch off the lights in the kitchen when no person is in the
kitchen, or to turn the lights on in the living room when a
person is recognized to walk to the living room. These two
simple and placative scenarios highlight the usefulness and
the need for a real world, 24/7 utilizable cheap and reliable
positioning system ready for daily use. The scenarios are of
course not limited to electrical power consumers, and can
easily be extended to other energy consumers like the com-
ponents of HVAC (heating, ventilation, and air conditioning)
systems. Indoor positioning systems are not limited to the
use in SmartHomes. They can be used in different appli-
cation scenarios like location based network access, games,
logistics and security [4]. The vast majority of today’s indoor
positioning systems is not utilizable for people due to their
obtrusiveness, cost factors, and their complicated setup and
maintenance procedures. In this work, we argue to utilize
an ecosystem of Wi-Fi-Access Points in combination with
SmartWatches to achieve an accurate, unobtrusive, daily usable
indoor positioning system for the use in out of the lab settings.

The research hypothesises valid within this paper can be
formulated as follows: (i) The expected positioning accuracy
of a SmartWatch is applicable for implicit SmartHome con-
trol based on location information; and (ii) Compared to a
SmartPhone the accuracy drain of a SmartWatch is negligible;

II. RELATED WORK

The basic indoor positioning techniques can be clustered
into (i) dead reckoning [5], (ii) proximity sensing [6], (iii)
triangulation [7], (iv) trilateration [7], and (v) fingerprinting
(scene analysis) [8]. The use of Wi-Fi signals for positioning
systems has become popular during the last years [4], mainly
due to the increasing availability of Wi-Fi Access Points (APs).
As of today, it is very unlikely in a urban area to find a spot
where not at least one SSID (Service Set Identifier) is received
by a Wi-Fi client. Today’s Wi-Fi based location estimation
approaches use the Received Signal Strength Indicator (RSSI)
from various APs to build a RSSI - Fingerprint database
which is used for the positioning of the Wi-Fi clients. One
of the first basic works was done by Bahl and Padmanabhan
[9]. They proposed an in-building user location and tracking
system named RADAR, which uses Wi-Fi signal strength data
with the k-NN machine learning algorithm. The median error
distance of RADAR is 2 to 3 meters, about the size of a
typical office room. A slightly better accuracy can be achieved
by additionally using the orientation of the Wi-Fi client, as
presented by Chan et al. [10]. By using the built-in orientation
sensors from an Android SmartPhone (Google Nexus One) the
positioning accuracy raised to 1.82m.

III. EXPERIMENT DESIGN

We present that the positioning accuracy that can be
achieved with a Wi-Fi based fingerprinting system fully
implemented on a SmartWatch is sufficient to make
positioning possible at least on room-size level in a daily
usable setup. We assume that the average minimum room
size is 10m2 or at least 3 × 3m. This room size sets our
accuracy goal to 3m. It was already shown that with Wi-Fi
fingerprinting this accuracy is achievable. All the work which
has been done on Wi-Fi fingerprinting so far shows a reliable
positioning accuracy between 2 to 3m [8], [9], [10], [11].
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As a suitable, off the shelf Wi-Fi client for realtime indoor
positioning, we selected a SmartWatch using the Android
platform. The use of Android Platform allows the reuse
of the developed application on various Wi-Fi clients if
necessary (e.g., SmartPhone, SmartWatch, tablets, etc.). The
major advantage of using a SmartWatch is its permanently
physical connectedness to its owner: the SmartWatch and
its owner are assumed to always be at the same location
which does not necessarily hold for a SmartPhone that
can be left on the desk or in the jacket and thus is not
always at the same location as its owner. Elaborated pros
and cons for the used SmartWatch are summarized in Table II.

We selected a maximum of five Wi-Fi APs in our exper-
iment, with a fixed SSID each and programmed to use a
fixed Wi-Fi channel (1,3,6,9,11). The number of used Wi-Fi
AP matches the power outlets in common household settings
which are required to operate the APs. As hardware for
the experiment setup we used (i) Fritz!Powerline 546E Wi-
Fi AP, (ii) the MotoACTV as standalone, Wi-Fi enabled
SmartWatch, and (iii) the Samsung Galaxy S3 mini as an
Android enabled SmartPhone platform. The Fritz!Powerline
WLAN Access Point immediately turns on once plugged into
a 230V power outlet and connects automatically via power
line communication (PLC) to other FRITZ!Powerline APs thus
autonomously building a network topology to overcome Wi-Fi
unreachability due to large distances. Technical details for the
SmartWatch and the SmartPhone can be found in Table I.

TABLE I
TECHNICAL SPECIFICATIONS

SmartWatch (MotoACTV) SmartPhone (S3 mini)

OS Android 2.3.4 Android 4.1.2

CPU 600MHz OMAP3 ARMv7 1,0GHz ARM Cortex A9

RAM 256MB 1GB RAM

Display 220x176 px (1.6”) 800x480 px (4”)

To get state of the art positioning accuracy we used the
device orientation information [10] provided by most of the
Android devices. The Android device orientation information
is additionally stored with the RSSI fingerprints in the training
database. To record variance in the collected RSSI data we
took training data samples from the Wi-Fi client device in
horizontal and vertical aligned position according to their as-
sumed ”daily working” orientation. We also took data samples
from the Wi-Fi client in all four cardinal directions (north,
east, south, west). This makes a total of eight different device
positions. For each of them we took at least 3 RSSI samples
resulting in a total of 3 × 8 = 24 training data samples
per trained location. Evaluation of the collected RSSI data
showed, that the data changes significant whenever the Wi-Fi
device changes orientation into one of these 8 positions. For
the SmartPhone, Table III and IV show the mapping between
the device position number and the actual device orientation
information we get from the Android OS.

TABLE II
MOTOACTV SMARTWATCH: PROS AND CONS

It is always on the user’s wrist, so it is as tight as possible
connected to the user’s location. This is not the case with a
SmartPhone.

positive
It is reporting Wi-Fi RSSI data in 2 second intervals. The
SmartPhone reports only every 4 seconds a new RSSI scan
report.

It uses US Wi-Fi standard and thus only supports Wi-Fi
channel 1 to 11.
Wi-Fi RSSI level ranges only from -35dBm to -100dBm
compared to -15 to -100dBm on standard Android Smart-
Phone.
It has a built-in 3-axis accelerometer, but it lacks a magnetic
sensor. We do not get the same orientation information as
from Android SmartPhone.
Display is very small. Must be considered during develop-
ment.

negative

Battery is drained after 3 hours if Wi-Fi is turned on
permanently. Our solution to overcome this limitation is
presented in Section III-A.

TABLE III
DISCRETE POSITIONS WITH SMARTPHONE HORIZONTAL

Pos# Azimuth (φ) Pitch (α) Roll (β)

0 north: 315◦ < φ < 45◦

1 east: 45◦ ≤ φ < 135◦

2 south:135◦ ≤ φ < 225◦

3 west: 225◦ ≤ φ ≤ 315◦

−60◦ < α < 60◦ −45◦ < β < 45◦

For the SmartWatch we used exactly the same device
orientations (be referred to Table III and IV) for collecting the
RSSI fingerprint training data values. We observed the same
high variance in the training data as with the SmartPhone.
As the MotoACTV SmartWatch does not provide the same
full orientation information as the SmartPhone (because of
the lack of a magnetic sensor), we could only distinguish
between the horizontal and the vertical alignment of the watch
using the data from the built-in acceleration sensor (for the
corresponding thresholds be referred to Table V).

A. Motion based Battery Run-Time Extension

The major disadvantage when using today’s SmartWatches
is their very limited battery run-time. If Wi-Fi is not enabled
and the display is activated rarely, experiments showed that
the battery run-time is about 3 days (as shown in Fig. 1).

Fig. 1. MotoACTV battery run-time with accelerometer based auto-WiFi.
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TABLE IV
DISCRETE POSITIONS WITH SMARTPHONE VERTICAL

Pos# Azimuth (φ) Pitch (α) Roll (β)

4 north: 315◦ < φ < 45◦

5 east: 45◦ ≤ φ < 135◦

6 south:135◦ ≤ φ < 225◦

7 west: 225◦ ≤ φ ≤ 315◦

don’t care β ≤ −45◦ or β ≥ 45◦

TABLE V
DISCRETE POSITIONS WITH SMARTWATCH

Pos# Acceleration az on Z-Axis comment

0 az ≥ 6.0m/s2 horizontal alignment,
watch display facing the
sky

1 az < 6.0m/s2 vertical alignment,
watch display looking
sideways

If Wi-Fi is permanently enabled to collect RSSI data, the
battery is empty after 3 hours. For the developed positioning
system, we know, that Wi-Fi scan reports are only needed
when a person is moving. We implemented an automatic Wi-
Fi enabling/disabling algorithm by using the built-in 3-axis
accelerometer. With the accelerometer it is possible to detect
if the SmartWatch, thus its user, is moving or not. If a change
of more than 0.1g on one of the accelerometer axis x,y,z is
detected, indicating movement, we activate Wi-Fi to record
RSSI values. If no change is detected for 20 seconds, our
algorithm disables the Wi-Fi system if no other service is using
it to safe battery power. With our developed automatic Wi-Fi
enabling algorithm we have extended the battery run-time from
3 to 20 hours as shown in Fig. 1.

IV. RESULTS

In this Section, we present the results of the field study
we conducted with our fully implemented prototypical system
to evaluate its suitability for out of the lab, real world, indoor
positioning. Fig. 2 shows the selection of the test rooms. Every
room has its own unique characteristic. The selected rooms
cover a wide variety of rooms that are expected in an indoor
positioning application. The floor plans of the rooms in Fig.
2 show the installation places of the five used APs marked
with small circles, their names (AP16-AP20), and the used
fingerprint rasterization. The medium sized room is tested with
two different fingerprint sizes (2×2m and 3×3m) to evaluate
the accuracy limits for our indoor positioning approach.

A. Evaluation Methodology

1) Machine Learning Classifiers: Various classifier
algorithms have been used for classification in a 10-fold cross-
validation test with the collected fingerprint data. The Weka
machine learning classifiers have been used with the following
parameter setup (the full package information is omitted
here for all weka commands): Naive Bayes (NaiveBayes);
Logistic Regression (Logistic -R 1.0E-8 -M -1);

Fig. 2. Floorplans of the selected test rooms for the field study as presented
on the SmartWatch and SmartPhone to the user (all in scale, except the farm).
Detailed information is presented in Table VI.

Multilayer Perceptron (MultilayerPerceptron -L
0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a);
Support Vector Machine (SMO -C 1.0 -L 0.001 -P
1.0E-12 -N 0 -V -1 -W 1 -K "PolyKernel
-C 250007 -E 1.0"); k-NN (IBk -K 1 -W 0 -A
"LinearNNSearch -A ’EuclideanDistance -R
first-last’"); Decision tree (J48 -C 0.25 -M
2). For offline evaluation and analysis we used 10-fold
cross-validation on the training dataset.

B. RSSI Data Variance

In Fig. 3 all recorded RSSI training data samples that have
been gathered during the calibration phase for the Medium
room with 3×3m fingerprint size are presented. Each boxplot
is coloured with the same colour as the AP from which it
represents all stored RSSI data. All boxplots printed into the
area of a certain fingerprint show only RSSI training samples
from this particular location.

Fig. 4 compares the RSSI training data samples received on
the Samsung Galaxy S3 mini SmartPhone with the RSSI data
that has been received on the MotoACTV SmartWatch. The
SmartWatch boxplots clearly show, that the highest RSSI value
is −45dBm. This limitation of the RSSI data dynamic range
on the SmartWatch explains why there is a small difference
in the prediction accuracy if the MotoACTV SmartWatch is
compared to the used Samsung Galaxy S3 mini SmartPhone.

C. Classification Performance

The analysis of the gathered calibration data from all 5 test
rooms was done with the Weka Explorer framework and 10-
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Fig. 3. Recorded SmartPhone RSSI training data from all APs and all 4 fingerprint locations in the Medium room with a fingerprint size of 3× 3m.

Fig. 4. RSSI training data comparison between SmartPhone and SmartWatch.

fold cross validation. Fig. 5 shows a bar graph, which presents
the Weka analysis results from the Medium room (with 3×3m
fingerprint size). The bar graph shows the percentage of correct
classifications from different machine learning algorithms for
the SmartPhone (Mobile) and the SmartWatch (Watch). The
bar graph is split up in 6 blocks, and every block shows the
classification performance with a certain system setup:

Pos. 0 only: RSSI data is only used from the device pointing
north in horizontal alignment. This will always result in the
best, but in practice unusable, highest possible number of
correct classifications.

use no Orientation: here we simply ignore the delivered
device orientation information.

use Orientation: this is our normal operation mode. The
delivered device orientation information is used as part of the

classifiers input feature vector. In this, normal operation mode,
we show the results also for reduced AP count when only 4,3
or 2 APs are used.

Beside the small room, with just 2 fingerprint areas, the only
test which gave acceptable prediction accuracy of ≥ 95% was
the Medium room with a fingerprint size of 3× 3m. The test
in the Medium room with 2×2m fingerprint size showed only
a prediction accuracy of 71.1%, so this room has been tested
a second time with the larger fingerprint size.

To improve the performance in the House experiment, the
fingerprint locations have been accumulated to build bigger
fingerprints as it is shown in Fig. 6. The existing training
dataset has been used to form the combined locations dataset
by simply renaming class numbers as required. The prediction
performance increased from 68.9% to 87.5% with the com-
bined fingerprint locations.

D. Evaluation Summary

Table VI summarises the results we obtained during the
field test with the selected rooms and their best positioning
performance including comments for explanation. Every test
room is listed with its total floor size, the used fingerprint
size and the prediction performance when using 5, 4 or 3
Wi-Fi APs. The comparison of the performance with different
number of Wi-Fi APs shows the loss of positioning accuracy
the lower the AP count gets. In the results from the Medium
room with a fingerprint size of 3 × 3m we see, that the use
of only 4 Wi-Fi APs is enough to get > 95% positioning
accuracy. The comment ”Magnetic sensor issues” in this table
means, that the orientation information from the SmartPhone’s
magnetic field sensor was wrong on some locations, due to
nearby iron or other disturbing materials. During analysis
of the recorded fingerprint data this can easily be found
if the prediction accuracy is higher without the use of the
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Fig. 5. Evaluated prediction performance exemplarily shown for the medium room with 3x3m fingerprint size, the six different classifiers, and with/without
the use of the orientation sensor to gain knowledge about the influence on the achieved accuracy.

Fig. 6. Accumulated fingerprint locations for the House test.

device orientation information. From the six different types
of machine learning classifiers, the k-NN classifier always
performed best, reaching a classification accuracy of 96,1% for
the SmartPhone and 91,1% for the SmartWatch in the medium
room with a fingerprint area of 3× 3m. The improved results
from the House with the combined fingerprints demonstrated
that a room can be calibrated with a too small fingerprint size.
If the calibration data is combined in a smart way to form
larger fingerprints, one can still get a satisfactory positioning
accuracy. In the experiment on the Farm we reached the Wi-Fi
signal range limit of about 100m outdoors [7] and typically
only half of this distance indoors. Because of this limited Wi-
Fi signal range, we did not get RSSI data from all 5 APs

at some fingerprint locations on the Farm. This explains the
low positioning accuracy for the large used fingerprint size of
10× 10m. The results of the Farm experiment show, that the
problems with the magnetic sensor data on the SmartPhone
caused the accuracy to drop below that of the SmartWatch.
The SmartWatch is not equipped with a magnetic sensor, thus
it is not facing the wrong magnetic sensor data problem that
can result in an unexpected loss of accuracy.

V. CONCLUSION

With the results presented in Table VI we can answer our
research questions: (i) The expected positioning accuracy of
a SmartWatch is applicable for implicit SmartHome control
based on location information. The results from the Medium
room evaluation show, that the fingerprint size has to be at
least 3×3m. With the assumption, that the average minimum
room size is 10m2 or larger than 3 × 3m, we conclude that
the SmartWatch is useable for indoor positioning on at least
room level. Additionally we can state that a SmartWatch is a
practicable and suitable technology for indoor positioning us-
ing Wi-Fi fingerprinting. The implementation of an automatic
Wi-Fi enable/disable algorithm extended the battery run-time
from 3h (with Wi-Fi always on) to 20h. This deems to be a
long enough run-time to make Wi-Fi fingerprinting feasible
with the SmartWatch for daily life use. Recharging only once
a day is feasible and very likely to be accepted by users;

(ii) Compared to a SmartPhone the accuracy drain of
a SmartWatch is negligible. In all tests (see Table VI) the
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TABLE VI
SUMMARY OF TEST RESULTS.

Floor size Fingerprint size Positioning accuracy SmartWatch (SmartPhone)
Test area

Dim. Area Dim. Area 5AP 4AP 3AP
Comment

Farm 30 × 80m 2400m2 10 × 10m 100m2 82.5%(73.1%) 74.6%(69.8%) 56.2%(51.1%) Magnetic sensor issues. Not
all APs visible on some lo-
cations.

Large 10 × 20m 200m2 2.5 × 2.5m 6.25m2 41, 1%(40.3%) 36.9%(33.6%) 27.7%(28.1%) Fingerprint size chosen too
small for 5 APs in this large
room. Not enough APs.

2 × 2m 4m2 63.9%(68.5%) 56.5%(66.6%) 47.1%(63.8%) Magnetic sensor issues.
House 10 × 16m 160m2

> 2 × 2m > 4m2 83.5%(87.5%) 79.3%(86.6%) 73.2%(81.1%) Fingerprint areas have been
combined here to form
larger areas, see Fig. 6.

2 × 2m 4m2 67.1%(70.1%) 53.5%(67.9%) 35.0%(61.2%) Fingerprint size of 2× 2m
too small.

Medium 6 × 6m 36m2

3 × 3m 9m2 91.1%(96, 1%) 86.3%(95.2%) 75.7%(93.6%) Successful test. Even with 4
APs accuracy sufficient.

Small 3.5 × 3.5m 12.25m2 1.75 × 3.5m 6.13m2 98.1%(100%) 97.2%(99.5%) 91.3%(97.8%) Successful test. Room has
only 2 fingerprint locations.

difference in the classification error between the SmartPhone
and the SmartWatch was at most 5% if data from all five APs
is used. The influence of installed Wi-Fi Access Points on the
positioning accuracy can be estimated and optimized. Table
VI shows, that with 4 AP’s we can successfully cover a 36m2

room. With > 95% correct classifications when using 3× 3m
fingerprint size. Let’s assume that the number of required AP’s
is direct proportional to the floor area in m2. We can then use
formula (1) to approximate the minimum required number of
AP’s to get a positioning resolution of 3m:

XAP =
A

10
+ 1 (1)

Where A is the size of the area to be covered in m2.

The results of the experiment emphasize that Wi-Fi fin-
gerprinting is an easy to implement technology useable for
indoor positioning in real world settings. There are limitations
to the positioning resolution (∼3m), but for use in Home
Automation (HA) systems e.g., to save energy [1], this is seen
sufficient. The use of a SmartWatch, like the MotoACTV, for
indoor positioning applications is preferable to a SmartPhone
as the watch is always tightly connected to a person. This
is not the case with a standard SmartPhone, which provides
slightly, but for our understanding negligible better positioning
performance around 5% (mainly due to the better and larger
built-in Wi-Fi hardware), but it is not necessarily located at
the same position as its owner (A SmartPhone can easily be
left on the desk or be forgotten in the coat pocket).

Using SmartWatches as an indoor positioning system has
been shown to be a step towards an unobtrusive and accurate
indoor positioning system useable by people in real world,
24/7 scenarios. The slightly reduced positioning accuracy is
negligible for our application scenario of smart energy man-
agement and compensated by the benefits of the SmartWatch
(e.g., unobtrusiveness, fixed body position, always on, etc.). As
SmartWatches are just in the phase of gaining high popularity,

technological advancements and new sensor implementations
are going to form multi sensor platforms in the future, that
will make them even more suitable for systems like person-
alized indoor positioning, that depend on a body worn sensor
platform.
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