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Abstract. We present a novel user interface concept for indoor navi-
gation which uses directional arrows and panorama images of decision
points, such as turns, along the route. The interface supports the mental
model of landmark-based navigation, can be used on- and offline, and is
highly tolerant to localization inaccuracy.
We evaluated the system in a real-world user study where decision points
proved to be as efficient for navigation as continuous route instructions
and panorama updates. We gained valuable insights on the role of feed-
back and of the frequency of decision points with relation to user confi-
dence and satisfaction. Based on our experiences, we summarize lessons
learned that inspire and guide the further design of UIs for pedestrian
navigation systems in indoor environments.
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1 Introduction and Related Work

While location-based services are meanwhile standard applications outdoors, lo-
calization and navigation inside buildings is still a hot topic in research [1].
Usage scenarios include (but are not limited to) museum visits, shopping tours
in a mall, or passenger support at the airport. As GPS reception is indoors of-
ten difficult or unavailable, and WLAN- or marker-based technologies require
a costly infrastructure or augmentation of the building [2, 3], vision-based local-
ization [4] is a promising technique that can work in any environment. Images
captured with the mobile phone are compared to reference images (using feature
matching) to determine the location and orientation of the device.

However, location estimates cannot always be perfectly accurate, since not
all locations provide sufficient distinctive visual features for locating the user.
In order to still provide reliable indoor navigation, the user interface (UI) of
a system giving live route instructions needs to tackle the not always perfect
accuracy of the underlying localization technique.
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Navigation and location-based applications often use augmented reality (AR)
interfaces (cf. e.g. [5], [6]), but AR overlays are sensitive to wrong orientation
or localization estimates. Since landmarks can increase users’ confidence and
reduce their cognitive load [7], we compared AR for indoor navigation with
a new panorama-based approach in earlier work [8]. The latter shows a 360◦

view of the current location, together with navigation instructions embedded
in the image, whenever a new location estimate is available (usually every few
meters). In a large-scale study, we compared the perceived guidance quality of
those approaches depending on localization accuracy [9]. We simulated different
types of inaccuracy (localization errors, orientation errors, or both combined)
and showed that AR instructions are prone to be misoriented or misaligned
with the real-world scene in case of wrong location or orientation estimates. By
contrast, matching panorama photos with the real world allowed users to orient
themselves also in case of significant localization errors. Overall, users perceived
panoramas to be more reliable in practice, compared to AR. Yet, we also learned
that updating panoramas every few meters is not optimal: if the shown locations
were incorrect (in the low-accuracy case), users were easily irritated, and rapid
changes of the interface were reported to have a disturbing effect.

To overcome these shortcomings, in this paper, we present the novel concept
of decision-point-based navigation (DPBN), which is a further development of
the previously presented panorama visualization [9]. DPBN is more robust to
localization errors and allows navigating even in case of failures of the localization
system. In the subsequent section, we explain the concept and implementation
of DPBN and report on its experimental evaluation. We evaluated the system
in a comparative real-world user study, where DPBN proved to be as efficient as
the conventional panorama approach. We also investigated usage patterns and
gathered subjective feedback using questionnaires. Based on the gained insights,
we summarize lessons learned that inspire and guide the further design of UIs
for vision-based navigation systems.

2 Decision-Point-Based Navigation

Instead of refreshing screen content as soon as a new location estimate is avail-
able, our new concept confines to panoramas of decision points [10]. We describe
the path to the destination as a sequence of route segments, each of them having
a length and an angle indicating the relation to the next segment. We call the
nodes connecting route segments decision points, as these locations require an
decisive action from the user, be it a turn or a waypoint choice. In that sense,
they differ from the widely used concept of landmarks, as landmarks not nec-
essarily occur only at decision points [11], and sometimes not even lie on the
route. Furthermore, decision points are not necessarily prominent (like land-
marks usually are), but simply provide a visual impression of the location. For
each decision point, the route description contains a 360◦ panorama image shot
at that position, and a superimposed navigation arrow illustrating the turn angle
(see Fig. 1, left, for example views along a route). Our concept provides several
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advantages compared to the conventional continuous panorama approach [10].
Error Tolerance. During localization, the panorama of the subsequent decision
point is automatically loaded (see Fig. 1, right). Let d be the distance between
two subsequent decision points (typically ranging between few meters and sev-
eral dozens of meters in large buildings), the system works correctly when the
localization uncertainty is below d/2, which makes it highly error-tolerant.
Robustness to Localization Failure. As the route instructions are down-
loaded to the device, the user can flick through a list of panoramas representing
the route summary step by step, both online and offline (i.e., without active local-
ization). This means that even when localization temporarily fails (e.g., because
query images are not discriminative enough or no WLAN signal is available),
users can navigate with help of the decision point instructions.
Mental Model Familiarity. The interface conforms to the familiar mental
model of self-orientation and route instruction memorization (e.g. “turn right
in the hall in front of the library, then walk straight ahead until the elevator
and turn left just before...”). In particular, landmark-based orientation [12] is
supported, as decision points are depicted as images.

2.1 Implementation

We implemented a mobile navigation application prototype in Android 2.3 (see
a screenshot in the right of Fig. 1). 360◦ panorama images are created out of
sets of six photos of each location that have previously been recorded with a
panorama camera mounted on a mapping trolley. When using vision-based lo-
calization, a building has to be mapped for anyway, so obtaining those images is
no supplementary effort. Images are projected on meshes that embody a sphere,
surrounding the user’s point of view. Alpha masks are added to each image to
smooth the borders and to create continuous panoramas.

By an experimenter app, location information can be sent to the client app
at the desired position of the route. Using this Wizard of Oz approach, navi-
gation instructions on a predefined path can be replayed in a controlled way,
enabling reproducible conditions in a study. This implementation simulates the
final system, in which query images taken with the phone’s camera would be
sent to a server that performs image matching and returns a location estimate.

2.2 Interaction Concept

Users can look around in the virtual view by dragging panoramas left or right
using the well-known drag gesture. On release, the panorama automatically re-
sets to the centered position, indicating the walking direction. In manual mode,
a swipe up or down shows the panorama of the next or previous decision point,
so that users can browse the sequence of turn instructions to the destination.

We also added the possibility to retrieve the closest panorama to the cur-
rent location (relocalization). Since vision-based relocalization would normally
require taking a reference image, in our implementation this feature is triggered
by raising the phone to eye height (detected by the accelerometer) [8].
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Fig. 1. A route description is represented by a sequence of panoramas (obtained from
reference image data) at decision points and turn instructions. Left: Three examples of
correspondences of decision point locations in a map and displayed panoramas. Right:
Even if vision-based localization is inaccurate, the user interface can display the next
decision point’s panorama, which allows reliable landmark-based self-orientation.

3 Evaluation

The system was evaluated in a real-world study to investigate the following
research questions (RQ).
RQ1. Does DPBN have an effect on efficiency?
Are users as fast as with continuous panoramas, or do they need more time to
reach their destination when the interface only shows them decision points?
RQ2. Is DPBN as convenient as continuous panoramas?
Besides the quantitative comparison, we investigated which mode users prefer
and how well they feel guided in either DPBN or the continuous mode.
RQ3. What usage patterns can be identified?
Beyond that, we were interested in observing usage patterns and strategies with
panorama-based navigation. We therefore let subjects use the system in offline
mode to see what we could learn for designing an ideal route description.

3.1 Design and Participants

The study had three conditions: continuous panoramas (in the following referred
to as Continuous), automatic decision points (DPBN-auto) and manual decision
points (DPBN-manual). Continuous denotes the mode in which panoramas of
the current location with navigation instructions were updated every few meters.
In DPBN-auto, only the panorama and navigation instruction of the respective
next decision point were shown. In DPBN-manual, the panorama images and
navigation instructions of all decision points were available to subjects in offline
mode, and were not updated automatically. Instead, subjects could swipe back
and forth between the decision point instructions manually.

Each participant ran through all conditions (within-subjects design). To
avoid learning effects, for each of the three conditions, a different path inside
our university main building was used. The three paths were 332, 220 and 316
meters long. The order of conditions was counterbalanced using a Latin square
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design. Consequently, all conditions were performed on each of the three paths
the same number of times.

We recruited 12 participants not associated with our university and not fa-
miliar with the building the study took place in. Three subjects were female, nine
male, the average age was 25. Subjects were rather experienced with smartphone
usage (75%); one person had previously used indoor navigation.

3.2 Proceeding and Data Collection

Prior to the experiment, subjects were briefly introduced to the prototype and its
modes of interaction. Subsequently, the experimental task was assigned, consist-
ing of three navigation tasks to a destination which was not revealed in advance.
Thereby, it was made sure that subjects had to rely solely on the navigation sys-
tem. The experimenter walked closely behind the subject and sent the panorama
images to the subject’s device using the Wizard of Oz application. Depending on
the condition, subjects got to view panoramas of their current location, updated
every few meters (Continuous), or only of the next decision point (DPBN-auto).
Location updates were also sent in DBPN-manual mode, but panoramas did
not change automatically on the screen. This ground truth data was used to
compare actual locations with the panoramas that subjects selected manually.

In all conditions, we measured the time until the destination was reached. In
DPBN-manual, we logged all user interactions on the smartphone and recorded
when a location update was received. By this, we were afterwards able to compare
the decision point viewed by the user, as well as the ‘correct’ next decision point.
This helped to the identification of ‘strategies’ when dealing with panoramas in
manual mode. At the end of the experiment, we collected subjective data with
a questionnaire.

3.3 Results and Discussion

RQ1. Subjects took on average 196 seconds (SD3 = 19.1) to the destination in
Continuous, 208 seconds (SD = 51.6) in DPBN-auto and 263 seconds (SD = 65.9)
in DPBN-manual. Results are visualized in the left diagram in Fig. 2. Measure-
ments in all conditions were normally distributed (p � 0.05 in a Kolmogorov-
Smirnov test). A t-test showed no significant difference between Continuous
and DPBN-auto (p > 0.05), but between all other conditions with p < 0.005.
DPBN-auto is hence essentially as efficient as the Continuous mode. By contrast,
subjects needed significantly more time in DPBN-manual.
RQ2. In questionnaires after the experiments, subjects gave qualitative feedback
to five statements S1 to S5 (see the tables on the right of Fig. 2). Results are
indicated on Likert scales ranging from 1 (strongly disagree) to 5 (strongly agree).
Participants rated the Continuous mode more pleasing to use than both DPBN
conditions (S1, 4.7 vs. 3.0). Likewise, they felt guided better to the destination
(S2 ) in continuous mode (4.8) than in the DPBN (3.7 in automatic, 3.4 in manual

3 We abbreviate standard deviations in the following with SD.
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Statement Condition A SD

S1: I found the method pleasing 
to use.

Continuous 4.7 0.5S1: I found the method pleasing 
to use.

DPBN (auto) 3.0 1.0

S1: I found the method pleasing 
to use.

DPBN (manual) 3.0 1.0

S2: I felt guided well to the goal. Continuous 4.8 0.5S2: I felt guided well to the goal.

DPBN (auto) 3.7 1.0

S2: I felt guided well to the goal.

DPBN (manual) 3.4 0.8

Statement A SD

S3: Decision points are sufficient for orientation. 3.8 0.5

S4: The ability to relocalize myself is useful. 4.9 0.3

S5: Moving up the phone to relocalize is convenient. 4.5 0.5

Fig. 2. Left: average time per condition to reach the destination in the study using
our navigation system prototype. The error bars indicate standard deviations. Right:
Qualitative feedback on the system. The average agreement (A) to statements S1 to
S5 is indicated on a 5-step Likert scale (1 = strongly disagree, 5 = strongly agree). SD
indicates the standard deviation.

mode). While those results imply that subjects were less satisfied with DPBN,
there is above-average agreement of 3.8 (SD = 0.5) that decision points are
sufficient for orientation (S3 ). This is a hint that the DPBN principle essentially
works (as confirmed by the results for RQ1), but has received less acceptance
with subjects. In order to find out how acceptance could be further increased,
we will take the observed user behavior in manual mode (RQ3) into account.
RQ3. The subjects’ strategies we have identified can be summarized in two ele-
mentary behaviors. One group always displayed the decision point lying ahead,
walked until the shown location was reached, and swiped then to the next deci-
sion point. These subjects almost never made use of the relocalization feature.
The other group relocalized very frequently, sometimes only in (difficult) parts
of the route, so that the effect was almost similar to the Continuous condition.
The relocalization feature (S4 ) was in general considered extremely useful (4.9,
SD = 0.3), and the mode of interaction to relocalize by moving up the phone
(S5 ) was perceived as convenient (4.5, SD = 0.5).

A possible explanation for frequent relocalization is that subjects felt un-
confident while walking without any confirmation until they reached the next
decision point, so that they used the relocalization feature to request an inter-
mediate ‘control’ point, checking if still on the right way. This hypothesis can
also explain the low acceptance ratings of DPBN in S1 and S2, compared to
the Continuous mode. While in DPBN-auto on average only 10.3 locations were
shown per path, 52.3 decision points were used on average in Continuous. In
the DPBN-manual condition, subjects on average swiped 15.3 times to a new
decision point and used 9.3 times the relocalization function. The latter numbers
lie in between the extrema of the continuous mode and DPBN-auto, indicating
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that a compromise between the two could be a solution to increase acceptance
of DPBN mode in general.

3.4 Lessons Learned

Based on our experimental results, we identified the following lessons learned
and proposals for improving the current system.

– Subjects reached the destination with DPBN-auto as fast as with continuous
panoramas (the time difference was not statistically significant). The panorama
update frequency can thus be reduced without affecting performance. Yet, the
system gains in reliability, since determining the next decision point requires a
lower localization accuracy compared to permanent localization precise to the
meter.

– Considering the sum of relocalizations and swipes in DPBN-manual, subjects av-
eragely viewed less panoramas than in Continuous, indicating that such frequent
updates are not necessary all the time. However, since they viewed more panora-
mas in DPBN-manual than in DPBN-auto, and frequently used the relocalization
feature, subjects’ confidence was apparently not high enough in DPBN-auto. A
more frequent confirmation if still on the right path is required, e.g. by adding
intermediate panoramas if the distance between decision points exceeds a certain
threshold. Confirmations to stay on the route could in particular be helpful if
the user has to follow a long hallway on which she has many options to turn off.

– To make it easier to detect whether a decision point is reached, a distance esti-
mation until the currently displayed panorama could be shown. Already passed
decision points could be marked so that users can see at a glance which part of
the route has already been completed in the list of panoramas.

– When the user is walking fast, signifying she is sure about her way, DPBN could
be used. As she slows down, e.g. in case of uncertainty (detected through the
phone’s accelerometer), the system could switch automatically into the contin-
uous mode to give more hints for orientation.

– To simplify matching between the virtual and the real world, significant ob-
jects, such as fire extinguishers, showcases or signage, can be highlighted in the
panorama. Those panoramas already exist as static images on the server, hence
there are no time constraints for object detection.

4 Conclusion

We have presented a novel interface for vision-based indoor navigation using
decision points (DPBN) which is very robust in case of localization inaccuracy. It
even can guide the user if localization temporarily fails (manual mode). Decision-
point-based guidance could also be interesting for non-vision-based localization
techniques, such as beacon- or marker-based approaches where no continuous
localization is available.

In a real-world study, we showed that DPBN is as efficient as continuous
panorama-based navigation. However, more confirmative information is required
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to increase users’ confidence and satisfaction. In future work, we will use our
lessons learned to improve the prototype in the aforementioned directions and
to identify appropriate candidates for further decision points. We will also com-
pare our approach against a 2D map, which could provide a better overview of
the total route than the list of decision points alone, and serve as alternative
information source for guidance.
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