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Abstract—We present GymSkill, a personal trainer for
ubiquitous monitoring and assessment of physical activity using
standard fitness equipment. The system records and analyzes
exercises using the sensors of a personal smartphone attached
to the gym equipment. Novel fine-grained activity recognition
techniques based on pyramidal Principal Component Break-
down Analysis (PCBA) provide a quantitative analysis of the
quality of human movements. In addition to overall quality
judgments, GymSkill identifies interesting portions of the
recorded sensor data and provides suggestions for improving
the individual performance, thereby extending existing work.
The system was evaluated in a case study where 6 participants
performed a variety of exercises on balance boards. GymSkill
successfully assessed the quality of the exercises, in agreement
with the professional judgment provided by a physician. User
feedback suggests that GymSkill has the potential to serve as
an effective tool for motivating and supporting lay people to
overcome sedentary, unhealthy lifestyles. GymSkill is available
in the Android Market as ‘VMI Fit’.

Keywords-activity recognition, skill assessment, health, mo-
bile, quantitative time-series analysis

I. INTRODUCTION

Encouraging people to exercise more is key to maintaining
or regaining personal health but, unfortunately, difficult to
achieve in practice. One barrier to exercising is that lay
people often are insufficiently knowledgeable about effec-
tive and safe physical exercises. Maintaining a long-term
exercise regime requires high levels of motivation and time
demand, which often conflicts with people’s busy lifestyles.
It is well established that access to a personal trainer has a
significant impact on both adherence to a physical exercise
program, and the quality of the exercise undertaken [1]. Per-
sonal trainers continuously monitor the exercises and both
provide individualized advice and motivate the trainee. They
also play an important role in rehabilitation, e.g. exercise
programs for muscle recovery after surgery, where the need
for advice regarding effectiveness and safety is even greater.

Unfortunately, the availability of specialized trainers is
limited and in most cases simply too expensive to provide
over extended periods of time, and where financial factors
are not a barrier, personal privacy preferences can be (i.e.,
the perception of the potential for embarrassment). Further-
more, where exercise equipment is involved, the use of

Figure 1. GymSkill: A smartphone-based personal trainer for monitoring
and assessing physical exercises using fitness equipment. Left: A subject
training with GymSkill on a rocker board. Right: the phone with the
GymSkill application running placed on the board.

a personal trainer significantly decreases the likelihood of
inappropriate and even dangerous use of certain pieces of
fitness equipment in either gym environments or at home.

We present GymSkill, a smartphone-based personal
trainer for ubiquitous monitoring and assessment of phys-
ical exercises performed using standard fitness equipment.
Figure 1 illustrates a typical use-case for GymSkill in
which a trainee is performing exercises on a balance board.
The system utilizes the embedded sensing capabilities of
a phone placed on the balance board (accelerometer and
gyroscope) to record the exercises. The quality of recorded
data is automatically analyzed, i.e., the skill of the trainee is
assessed. The system provides basic situated (auditive and
visual) feedback during exercising and, moreover, performs
retrospective automatic assessments of the quality of the
performed exercises [2]. It provides a global quantitative
judgment of physical exercises in the form of an aggregated
skill metric, which is the basis for competitive evaluations
of physical exercises. It is, thus, ideal for tracking individual
progress over the course of a long-term training program.

In addition to this summary feedback, GymSkill also
analyzes physical exercises at a fine-grained level. By means
of a multi-variate time-series analysis procedure, the sys-
tem highlights critical portions of exercises that exhibit
quality breakdowns, i.e., where improvements are needed
or dangerous situations have been detected. Consequently,



GymSkill not only provides information about the quality
of an exercise session, but also potential reasons for quality
differences. This is a unique capability that distinguishes it
from existing personal health and fitness systems. This com-
bination of global and local analysis directly corresponds to
two key functions of a human personal trainer who both
provides a thorough reactive analysis of individual exercises
and keeps track of the overall training progress.

Our technical contributions are twofold. First, we present
an integrated framework for recording and analyzing phys-
ical exercises that utilizes a smartphone attached to a piece
of fitness equipment. As a concrete example, we focus
on balance boards in particular; these are widely used
in both physical training and rehabilitation [3]. GymSkill
and the underlying analysis methods are, however, general
approaches and not limited to balance board exercises. The
smartphone app provides the ‘infrastructure’ for recording
and analyzing sensor data as well as the user interface for
progress tracking and cueing within a training program, and
for the automated feedback on quality of the exercises.

Second, we present new approaches for activity recog-
nition that go beyond the state-of-the-art by quantitatively
analyzing the quality of sensor data. Given a segmentation of
the sensor data into exercises, provided by standard activity
recognition procedures [4], the overall quality of the exer-
cises is assessed by comparing the empirical distribution of
recorded data with expected behavior using Kullback-Leibler
divergence (KLd) along with other statistical properties. For
the subsequent fine-grained analysis of sensor data streams,
a new approach is developed utilizing a pyramidal Prin-
cipal Component Breakdown Analysis (PCBA) technique.
This unsupervised analysis procedure highlights structural
changes in multi-variate time-series data. The combination
of global and local analysis provides an effective assessment
of the overall quality of recorded time-series data in terms of
measuring the deviation from, for example, a ‘gold standard’
template, and identifies reasons for quality differences.

In combination with a repository of pre-defined
equipment-specific exercises, GymSkill enables personal-
ized, ubiquitous training. We evaluated the system in a
practical case-study, in which 6 trainees over a period of
5 consecutive days, with different levels of experience of
fitness equipment, performed exercises on standard rocker
boards (a common form of balance board). In total, the
feedback from users, and comparison of assessments pro-
vided by a professional physician and the system, show
that GymSkill has the potential to mimic key functions of a
personal trainer.

II. BACKGROUND AND RELATED WORK

A. Automated Personal Health and Fitness (PHF) Systems

Technical resources to support physical activity have evolved
in research and commercial use. Medical devices and sen-
sors, such as oximeters and heart rate monitors, formerly

reserved to professional medical use, can now easily be con-
nected to mobile phones. Sports devices like GPS watches,
heart rate sensors and foot pods allow users to monitor
and keep track of their activities. For home use, dedi-
cated hardware platforms (e.g. the Nintendo Wii + balance
board) encourage users to physical activity through fun
and social commitment, but do not focus on medically
correct exercising. Further examples of commercial PHF
systems are activity loggers like activPal, or FitBit, which
monitor activity data throughout the day. Many applications
supporting physical activity can be found in smartphone app
stores. They e.g. track running or cycling activities, and
often provide exercising and workout instructions. However,
assessing the skill level and providing targeted tips how to
improve is not covered yet.

Several research approaches for sensor-augmented phys-
ical training devices have been presented for outdoor and
indoor activities, such as skiing [5] or tracking free-weight
exercises with accelerometers in a glove and on the waist
[6]. In [7], a sensor-augmented balance board that sup-
ports the improvement of the equilibrium sense and mus-
cular training [8] is described. Sensor data from the board
was recorded and visual feedback on correct performance
decreased the necessary amount for supervision. In the
SESAME project (SEnsing for Sports And Managed Ex-
ercise)1, mobile sensor-based approaches for coaching per-
formance improvement of athletes are investigated.

B. Quantitative Analysis of Human Activities

A common setting in activity recognition (AR) is that triaxial
accelerometers or gyroscopes are worn on the body or
embedded into objects of daily use. The recorded multi-
variate sensor streams undergo frame-wise analysis to infer
the activities that were performed by the subject. Often,
simple yet effective methods suffice to obtain good recogni-
tion accuracies, rendering information about what subjects
are doing readily available. However, so far relatively little
work has been invested into a further, detailed analysis of
these segmented activities. Extracting their characteristics,
i.e., how well these activities were performed, would be
beneficial to a variety of applications.

One exemplary domain for quality analysis of human
activities is the quantification of human motor performance,
which is important for a number of disciplines and domains.
The acquisition of motor abilities is a well established
research field in the wider biological and physiological
research context. However, still a thorough theoretic founda-
tion for motor skill assessment has not yet been developed.
Consequently, only few technical systems exist that directly
assess human motor performance. Settings often are rather
constrained, e.g. the acquisition of surgery skills [9], and
the assessment of professional athletes’ skills (e.g. in tennis

1SESAME. http://www.sesame.ucl.ac.uk/



[10]). So far, no generalization technique has been developed
for applying approaches across application boundaries.

Another domain of quantitative analysis of human move-
ment is gait analysis, which is so far almost exclusively
restricted to computer vision based approaches [11]. These
systems provide an in-depth analysis of peoples’ behavior
but the methods employed are not straightforward to adopt
for the analysis of other activities and environments. Reasons
for this lie either in restrictions of sensor-resolution or in
dependencies on domain knowledge, which makes gener-
alization difficult to achieve. Approaches for sensor data
analysis from real-life environments that are independent of
excessive domain knowledge therefore remain open research
problems in this novel field of activity recognition.

III. AUTOMATIC ASSESSMENT OF PHYSICAL EXERCISES

Success in encouraging people to adopt healthier lifestyles
by promoting regular physical exercises requires lowering
the barrier for people to engage in sport activities they
find embarrassing or are not used to. In addition to this
’persuasion’, constant monitoring and timely intervention if
necessary is required for health and safety reasons.

GymSkill is an automatic recording and analysis system
for easy-to-use and correct assessment of physical exercises.
The employed algorithm can basically be used for monitor-
ing and analyzing virtually any kind of exercises that are
based on reoccurring movements with quality constraints
related to smoothness and efficiency criteria. For the sake of
clarity, we focus on balance board2 exercising as an example,
which trains, e.g., ankles and the equilibrium sense, and
contributes to the overall fitness.

Using digital technologies for constantly and automat-
ically monitoring and analyzing fitness programs and for
tracking the progress of an exercising person represents the
conceptual equivalent to a personal trainer. It allows faster
improvements, as targeted training becomes possible. Indi-
vidual feedback addresses problem areas or exercises that
need particular improvement. That way, the training progress
is adapted to individual needs. Compared to its human
counterpart, a digital personal trainer has the advantages of
ubiquitous and permanent availability along with negligible
costs. Furthermore, it helps preserving the privacy and
dignity by allowing for exercising without supervision and
in a more comfortable environment than a gym. Arguably,
automated skill assessment and individualized feedback also
increases and maintains motivation [12], which is crucial for
effectiveness, since training needs to be done regularly.

We position our quality assessment approach on top of
raw sensor data acquisition, data processing and activity
detection. In previous work, analysis algorithms have already
been described for sensing systems to automatically detect
the activities performed by the wearer, and to provide

2see, e.g., www.thera-band.com/store/products.php?ProductID=17
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Figure 2. Overview of the GymSkill system: The smartphone records
sensor data during exercising, which are processed by a server to generate
a skill assessment. Besides simple real-time feedback (cueing), the sophis-
ticated exercise analysis can be reviewed later in different levels of detail.

statistics about these activities of interest. The latter usually
corresponds to summaries of e.g. cycled or ran distances,
estimates of energy expenditure and heart rate curves. How-
ever, although desirable, so far the automatic, expert-like
judgment of the quality of physical exercises at a fine-
grained level has not yet been addressed.

A. System Overview

GymSkill currently consists of two parts: a smartphone ap-
plication and an analysis component running on a server (see
Figure 2). During the exercises, the smartphone (attached to
the fitness equipment) records acceleration and orientation
data and the user already gets immediate feedback based on
an initial analysis like the remaining number of repetitions
or whether the optimal deflection angle was exceeded. This
feedback is presented in well-readable graphics (readable
while exercising) and as audio feedback. The logged infor-
mation is sent to a server, where the automatic analysis
is performed in terms of a complex ‘after-the-fact’, i.e.,
retrospective assessment of the exercise correctness, which
serves as indicator for the user’s skill. The skill level (score)
is calculated and sent back to the smartphone, indicated
as visual feedback in different steps between ‘thumbs up’
and ‘thumbs down’. Additionally, more sophisticated graph
visualizations are available, which allow the review of the
exercise over time and help the user to identify problems.

B. Smartphone-Based Infrastructure

GymSkill is implemented as Android application3 and con-
sists of an exercise database, the sensor recording func-
tionality and the skill assessment presentation. During the
exercise, the smartphone (app running) is placed on top of
the balance board so that it can record all of its movements.
The user can then either work through a complete training
plan, or select single exercises for individual improvement.
The built-in training plan has been composed by a sports
medicine specialist and consists of 20 exercises of increasing

3https://market.android.com/details?id=de.tum.ei.vmi.fit



Figure 3. User interface of the GymSkill application. Left: Skill assessment
after exercising, based on the evaluated sensor information. Right: In the
exercise list, exercises that need further training can easily be identified.

difficulty. During the performance, incorrect movements
(e.g. excessive displacement of the board) are signalled.
The number of repetitions is shown on the display in large
readable numbers, and a sound notification signals exercise
completion (particularly useful for exercises types where
glancing at the phone is difficult). Sensor data (acceleration,
magnetic field, and orientation) are logged on the device and
after each exercise completion submitted to a server for the
skill assessment.

C. Automatic Exercise Assessment

To assess exercise quality, we estimate global quality mea-
sures that cover important aspects of the performed motion.
Advised by an expert clinician, the following attributes were
defined as necessary for an automated assessment system:

Smoothness and continuity of movement: For continu-
ous exercises, as they are typical for gym-based training,
it is important to maintain smooth motion. In order to
remain relatively independent of the particular exercise and
to avoid the excessive use of prior knowledge, a novel local
assessment approach has been developed (next section).

Global motion quality: Each exercise requires the user
to perform particular motion sequences. The assessment on
how well these motions were performed is crucial for the
assessment of the quality of the performed task.

Usage of board’s degrees of freedom: If a task requires
the user to fully displace the board along at least one degree
of freedom, the fraction to which he uses this opportunity
while avoiding extreme postures (e.g., touching the ground)
provides a valuable measure for exercise performance.

The goal of the automated assessment is to estimate
measures for the aforementioned aspects and to combine
them into a single performance criterion or metric. Aiming
at transferability of the method, the amount of parameters
and prior knowledge used is limited as much as possible.

Before the actual analysis, the recorded orientation values
(azimuth, pitch, roll) are normalized to a common value
range with zero-mean. Deviation from mean translates into

Input: seq. S = S1 . . . SL with Si ∈ Rn (e.g. n = 3 for a, p, r
orientation), max. window length W , reconstr. perc. p

Output: matrix P [L × W ] containing localized reconstruction
errors for all L samples at W levels
for all w = 2 . . .W do

input dim. s = n× w
extract all analysis windows {W} with length w using sliding
window proc. with shift = 1, dim. = s:

S 7→ {Wi}i=1...L−(w+1), with Wi ∈ Rs

estimate
PCA({Wi}) = {(λj ,vj)}, j = 1 . . . w, λj ≥ λj+1

estimate target dimensionality d for reconstr. quality p:
d = k :

(∑k
i=1 λi/

∑w
i=1 λi

)
≤ p

for pos = 1; pos < L− (w + 1); pos++; do
extract analysis window W ∈ Rs at position pos
project to d-dim. sub-space: W 7→Wd ∈ Rd

reconstruct original window: Wd 7→W ′ ∈ Rd

calc. reconstr. error, assign to position pos at level w
Pw
pos = ||W ′ −W||

normalize pyramid range (across dataset)
end for

end for
return P

Algorithm 1: Principal Component Breakdown Analysis

[−180◦,+180◦] and is mapped to [−1,+1]. For both pitch
and roll, the calibrated 0-positions are taken as idle posi-
tions while the calibrated maximal displacement angles are
mapped to [−1, 1], i.e., [αmin, αmax]→ [−1,+1].

Local Analysis: In addition to an overall analysis of
quality of exercises, GymSkill aims for unveiling interesting
and informative portions of the recorded sensor data streams.
When analyzing re-occurring (ideally smooth) movements,
‘interesting’ refers to sections where the sensor data appear
unusual compared to the rest. This is e.g. the case when a
participant hesitates or gets stuck while exercising. Unlike
standard techniques for time-series analysis (e.g. [13], [14])
our approach processes sensor data of arbitrary dimension-
ality. This is crucial since flattening sensor data to one-
dimensional sequences (e.g. using the Euclidean norm) can
destroy potentially important information of the original
signals. Our basic assumption is that sensor data for a partic-
ularly analyzed movement should share certain (unknown)
statistical properties. Unusual portions of a sequence violate
this assumption and can thus be identified as such.

Algorithm 1 describes the local quality assessment algo-
rithm – Principal Component Breakdown Analysis (PCBA),
based on a PCA of a sensor data sequence utilizing local
neighborhoods. Using a sliding window technique, analysis
windows of length w are extracted and a PCA model
is learned and applied to project all frames to a lower-
dimensional sub-space. Its dimensionality is determined by
the analysis of the eigenvalue spectrum. The target dimen-
sionality is chosen based on a pre-defined threshold for
reconstruction quality (typically 95% of the variance shall be
preserved). Using the lower-dimensional projection, the orig-
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(a) PCA-based assessment
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(b) Wavelet scalogram

Figure 4. Local skill assessment using PCBA. Yellow and red areas
represent quality breakdowns in exercises. [best viewed in color]

inal frames are reconstructed. The resulting reconstruction
errors are used as a measure for the quality of the underlying
movement, which is sample-wise assigned to the original
sequence. PCA models will require more eigenvectors to
preserve a certain amount of variance of the original data
if the underlying signal is less regular. By fixating the
target dimensionality and implicitly analyzing the modeled
variance, an effective quality assessment is gained.

For unsupervised analysis the ‘correct’ frame length, i.e.,
the size of the neighborhood that needs to be analyzed
for discovering potential characteristic breakdowns, needs
to be known. Unfortunately, this information is typically
not available for practical applications. To overcome this
dilemma we employ a multi-scale approach by performing
quality assessment on a pyramidal adjacency representation
of sensor values with increasing frame lengths, which is
comparable to the general idea of Wavelet analysis or
the approach presented in [14]. In contrast to the latter,
however, the PCA based approach focuses on self similarity
and breakdowns w.r.t. global characteristics. Figure 4(a)
shows the pyramidal representation of an exemplary exercise
segment where characteristic breakdowns (large values indi-
cated in yellow and green) can clearly be seen. For example
at around t ≈ 60 and t ≈ 300 the participant hesitated in her
circular rocker board exercise, which results in substantial
increases of the PCA-based reconstruction errors at different
scales. For comparison the –far less informative– Wavelet
scalogram of the same data is shown as well (Figure 4(b)).

As a measure for continuity the mean of the reconstruc-
tion error along a specific scale c is derived for feedback
generation, denoted as Dc:

Dc = 1/W
∑W

w=1
P c,w, (1)

where P c,w represents the element in row c and column w
of the matrix P (see Algorithm 1).

Global Analysis: To derive the global motion quality,
the motion axis, which shows the largest energy during
the exercise (providing the dominant signal) is estimated.
If the training device offers d degrees of freedom, the fol-
lowing analysis is performed for the d most dominant axes.
Using standard Kaplan-Meier estimation [15] the empirical
distribution function is derived and then integrated to form
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Figure 5. The same empirical distribution (blue, solid line) in comparison
with an ideal distribution (red, dotted line) for the normalized (left) and
un-normalized case (right). Although the shape is similar (left) there are
significant differences in how far the distributions span the available space.

the empirical cumulative distribution function (ECDF). This
ECDF is compared to a gold-standard template, represented
as an ideal distribution function, in two different settings.

For rocking tasks, the ECDF of a sigmoid with an ampli-
tude of 0.8×αmax with added Gaussian noise is used as the
ideal distribution. For balancing tasks, a normal distribution
with a variance of 0.1×αmax is employed. The parameters
of both distributions are motivated by insights of a physician.
For other cases where no such prior knowledge is available,
the performance of a very skilled athlete or professional can
be used to estimate the ideal behavior empirically.

In the first setting, the two normalized distributions
(zero-mean, unified variance) are compared using standard
Kullback-Leibler divergence (KLd):

Dg =

∫ +∞

−∞
Pn(x) log

Pn(x)

ECDFn(x)
dx, (2)

where Pn and ECDFn correspond to the normalized ideal
and empirical distributions.

Second, the un-normalized distributions are compared (see
Figure 5). The KLd in this setting gives insights into how
well the degrees of freedom on the board are utilized during
the exercise (for rocking tasks) or how well the subject can
keep his balance (for balancing tasks):

Da =

∫ +αmax

−αmax

P (x) log
P (x)

ECDF(x)
dx. (3)

For translating these distances into suitable metrics, the
logarithms of Dg , Da and Dc (cf. Equation 1) are trans-
formed with the sigmoid function:

∀i ∈ {g, a, c} : Mi =
1

1 + exp (log (Di × ci))
(4)

where cg, ca, cc ∈ R > 0 are parameters that determine
the sensitivity of the assessment and the impact of each
single attribute. All estimated measures Mg , Ma and Mc

lie between 0 and 1 where 1 corresponds to an ideal
performance. The (normalized) number of extreme postures
(i.e. touching the floor) and the average over all measures
results in the final performance score P , which is translated
into the thumb symbol representation shown in Figure 3.



Id Position Description

1
2
3
4
5
6

Sitting
Sitting
Sitting
Sitting
Sitting
Sitting

Back and forth, left foot
Left and right, left foot
Back and forth, right foot
Left and right, right foot
Back and forth, both feet
Left and right, both feet

7
8
9

10

Standing, supported
Standing, supported
Standing, supported
Standing, supported

Back and forth, left foot
Left and right, left foot
Back and forth, right foot
Left and right, right foot

11
12
13
14

Balancing
Balancing
Balancing
Balancing

Eyes open
Eyes closed
Left foot only
Right foot only

15
16
17
18
19
20

Standing, free
Standing, free
Standing, free
Standing, free
Standing, free
Standing, free

Back and forth, both feet
Left and right, both feet
Back and forth, left foot
Left and right, left foot
Back and forth, right foot
Left and right, right foot

Table I
SET OF EXERCISES USED FOR CASE-STUDY ON BALANCE BOARDS

Automated Feedback: The measures Mg,Ma,Mc, along
with the mean and variance of the ECDF, are furthermore
used to produce automated textual feedback for the exercis-
ing user. Simple rules combine multiple performance aspects
in a single condition, which triggers a specific textual cue:

M1 > ti ∧ M2 < tj ∧ ...→ Textual cue, (5)

where ti corresponds to a real-valued threshold between
0 and 1. This way, expert knowledge can be translated
easily into a rule-set specific for each exercise. Both positive
feedback about improvement of certain performance aspects,
as well as constructive criticism is provided to the user.
Furthermore, the parameters c{g,a,c} (equation 4) control the
sensitivity of the feedback and can be adapted easily, e.g.,
for novice vs. advance users, without the need to change the
definition of the rules for feedback generation.

IV. CASE STUDY

To evaluate the assessment procedure, we conducted a
case study in which subjects performed balance board exer-
cises. We afterwards used the GymSkill system to generate
automatic exercise assessments of these data, providing both
overall (global) and fine-grained (temporally localized) skill
analysis as described in the previous sections. In addition, we
surveyed subjects to get qualitative feedback on the practi-
cability of the digital personal trainer for physical exercises.
This included aspects like user satisfaction, potential long-
term training motivation and the usability of GymSkill.

A. Participants

Six subjects (1 female, 5 males) aged between 25 and 33
years (average: 29, SD=3.4) participated in the study. Four
participants reported a rather sedentary lifestyle with less
than two hours of sports per week; two of them indicated
to do 6 to 10 hours of sports per week. Four participants

were new to balance board training, two had experience with
similar training devices.

B. Procedure

Participants trained for a period of 5 days and performed a
set of 20 exercises twice a day (morning and afternoon), cf.
Table I. With six subjects participating in the study 1,200
exercises were recorded. A rocker board (see Figure 1) was
used as training device; the application itself was running on
an Android phone. The smartphone was placed in the middle
of the board and fixed with a rubber mat so that it would not
slide off the rocker board during the exercises. For system
evaluation the exercises were also video-recorded.

Qualitative feedback on the GymSkill prototype was gath-
ered using questionnaires. After the first set of exercises
subjects were asked to give first feedback. After the last
exercise set subjects answered a second, more comprehen-
sive questionnaire. We asked for their opinion on the training
effect of the application, usability issues and training fun.

C. Ground Truth

The video footage was reviewed and analyzed by an physi-
cian in light of quality assessment criteria: i) regularity of
the movement, ii) angles of the back and forth movement
(maximally possible deflection exhausted?), if the edge of
the board touched the floor (should be avoided), iii) tempo,
iv) body posture (e.g. leaning). On this basis, we judged the
automatically generated analysis results regarding plausibil-
ity and correctness. Additional factors, such as compensating
body movements or support by hands, being likewise a clue
for correct exercise execution, can not be detected with the
smartphone’s built-in sensors. Four randomly chosen sets of
exercises (i.e. 80 exercise runs in total) were assessed for
each participant: two early ones from the first two days, and
two late ones from the last two days.

We intentionally did not provide Gymskill’s analyses
to participants in this first case study in order to gain
information on their improvements without feedback. We
will use this ground truth for later evaluations of Gymskill’s

Could help to reach training goal
Would motivate to regular training

I would continue using it
1 2 3 4 5

Feedback on Prototype after 5 Days of Training

Most attractive features Rating SD

Individual feedback 5.0 0.0

Exercise suggestions 4.8 0.4

Overall assessment 4.2 1.2

Most attractive features Rating SD

History/Training diary 4.0 1.1

Exercise grading 3.8 1.5

Exercise replay 3.8 0.4

Figure 6. Top: User feedback on GymSkill after 5 days of use. GymSkill
can help to reach training goals faster, motivate in the long term, and
participants would personally use it. Bottom: Results on most attractive
features and live feedback. Answers based on a Likert scale (5=fully agree).



effectivity in skill improvements. Applying the automated
analysis methods to the data recorded in the user study (by
taking the average over all estimated performance measures
as described above) revealed that the general improvement of
the participants was only moderate. This indicates a potential
for Gymskill’s feedback to support faster improvements.

D. Automated analysis and individual feedback

In order to demonstrate the suitability of our automated
feedback to highlight sources of problems, we focus on the
performance of subject 1 for two selected trials (start and
end of the study), as shown in Figure 7.

Figure 7 (a) shows the detailed analysis of the perfor-
mance of subject 1 at the beginning of the study. The
different graphs show the assessment of different criteria of
the performed exercise. The subject reaches the maximum
angle possible with the calibrated board, i.e., touches the
ground 3 times and shows difficulties with the motion which
manifests in four different aspects: i) At certain points there
are breakdowns in the structure of the motion as it is
identified by the PCBA; ii) The subject does not follow a
harmonic motion as can be seen in the angle distribution,
normalized regarding standard deviation; iii) The subject
does not utilize the whole degree of freedom available on
the board; iv) The mean of the recorded board positions
does not lie close to the calibrated zero-position, which leads
to a unsuitable posture. The automated textual feedback
highlights these shortcomings to support the visual feedback.

During the course of the study, subject 1 has shown
significant improvement as can be seen in Figure 7 (b).
The recorded motion is more continuous compared to the
recording from the beginning of the study. Furthermore, the
overall movement is much closer to the ideal sinusoid-like
motion. However, there is still room for improvement as not
the full range of angles is utilized during the exercise.

E. User Experiences

After the study, participants were asked to judge GymSkill’s
potential in terms of exercising motivation, functionality and
usability. All answers of the questionnaire were given on a
5-point Likert scale (1=fully disagree, 5=fully agree).

1) Motivation: Participants answered that GymSkill
could help to reach a defined training goal faster with an
average of 4.2, standard deviation (SD) =1.3. The potential
to motivate regular training in the long run was evaluated
with an average of 3.7 (SD=1.0). Participants confirmed that
they would continue using the application with 4.0 (SD=1.5).
The distribution of answers can be seen in the upper diagram
in Figure 6. Overall, subjects agreed with the statement that
training with GymSkill is ‘fun’ with 3.8 (SD=1.2).

2) Requested Features: Participants appreciated most the
individualized feedback GymSkill provides after each exer-
cise (5.0, SD=0.0), followed by suitable exercise suggestions
(4.8, SD=0.4) for faster improvements. The ability to see a

training history of results was evaluated with 4.0 (SD=1.1),
the ability to replay individual exercises with 3.8 (SD=0.4).
For the full results, see the lower diagram in Figure 6.

3) Live Feedback: Live feedback during exercising was
well perceived by the participants. The counting of repeti-
tions was considered helpful (4.7, SD=0.8). The same holds
for warning when the board was deflected too much. This
warning was given visually and acoustic; users here slightly
preferred the sound (3.6, SD=0.8) over the visual feedback
(3.3, SD=1.4). Users did not feel distracted by GymSkill
(2.0, SD=0.9), e.g., because they had to look downwards on
the display. However, the glance frequency was reduced over
the course of the study. While subjects stated on day 1 to
pay attention to the visual feedback during exercising with
4.3 (SD=0.5), they responded to the same question with 3.5
(SD=0.8) at day 5.

4) Usability: Training with GymSkill was evaluated pos-
itively. Overall handling (phone placement on the board etc.)
was rated with 4.0 (SD=1.1), the interface of the application
itself with 5.0 (SD=0.0). The readability of the display when
placed on the board was evaluated with 3.8 (SD=1.3). The
phone on the balance board obviously did not restrict or
negatively affect the users while exercising (1.8, SD=1.3).

V. DISCUSSION

Encouraging people to exercise more often is important but
difficult to achieve in practice. We presented GymSkill, a
personal trainer for physical exercises using fitness equip-
ment as it is commonly used in gyms. Utilizing smartphones
and novel activity recognition algorithms, GymSkill serves
as ubiquitous assessment system for regular exercises.

The results of our case study, where a cohort of partici-
pants used GymSkill over the course of a training program,
are highly encouraging. The system proved suitable for
assessing the overall quality of exercises, thereby replicating
a physician’s judgment. Furthermore, it unveiled typical ex-
ercising errors like deficient smoothness in movement or not
using the available freedom of motion. Participants’ feed-
back regarding the usability, suitability, and effectiveness
of the digital personal trainer was overwhelmingly positive,
which gives evidence for GymSkill’s high potential for ef-
fectively motivating and supporting people to maintain phys-
ical exercises on a regular basis. Although GymSkill was
deliberately designed as a standalone ubiquitous assessment
system, it is possible to incorporate additional (wearable)
sensors, e.g. on upper limbs, to extend the criteria accessible
to the analysis. Linking GymSkill to –closed circuit– video
capturing facilities represents another option, which would
allow even more detailed post-exercise feedback. Such video
streams could be annotated automatically to enable visual
feeback in addition to the textual cues already generated by
the system. GymSkill proved as a valuable complement to
professional instructions, qualifying for a range of scenarios
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Figure 7. Detailed analysis of subject 1 performing task 2 at the beginning (a) and the end of the user study (b). The two PCBAs highlight differences in
continuity of the performed motion, showing a much better motion towards the end of the study that omits any extreme postures (touching the ground). The
comparison of the the observed and the ideal angle distributions indicate that initially (a) the subject had trouble performing the overall motion (General
motion) and did not utilise the full range of available angles (Angle usage). Towards the end of the study (b) the overall motion is much closer to the
ideal, although not the full available range of angles is used. Throughout this study this subject has shown this systematic error and would therefore greatly
benefit from the automated feedback highlighting this issue. [best viewed in color]

from physiotherapy, rehabilitation, fostering physical activity
for elderly or faster progress in exercising.
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[2] A. Möller, J. Scherr, L. Roalter, S. Diewald, N. Hammerla,
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