
Towards a Holistic Approach for Mobile Application
Development in Intelligent Environments

Stefan Diewald, Luis Roalter, Andreas Möller and Matthias Kranz
Technische Universität München

Lehrstuhl für Medientechnik
Arcisstrasse 21
80333 Munich

stefan.diewald@tum.de, roalter@tum.de, andreas.moeller@tum.de and
matthias.kranz@tum.de

ABSTRACT
“There’s An App For That” – but how do we actually de-
velop them? While smartphones and tablet PCs are getting
more and more popular and their application scenarios are
growing, we still develop them using only a standard inte-
grated development environment. Although context-based
services and apps do, next to network connectivity, require
lots of sensor data, the tools for providing realistic sensor
data during development are still immature.

Developing, testing, debugging and evaluating those next-
generation context-based apps require sensor data from the
mobile device – acceleration, motion, light, sound, camera
and many more sensors are available. Though, the existing
development tools do seriously limit application developers
by not providing the data at all or only on a very limited
scale. Especially for indoor environment applications such
as indoor navigation, seamless interaction between public
and private displays and activity recognition and monitor-
ing, realistic sensor data are needed and simulation support
during the development phase is essential.

In this paper, we present our work towards a holistic ap-
proach for mobile application development in intelligent en-
vironments. At the example of the Android mobile device
platform, we show how our approach can facilitate more
effective and realistic means for mobile application develop-
ment.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Mobile devices, smart phones, Android, middleware, ROS,
simulation, virtual environment, intelligent environment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MUM’11 , Dec 7-9, 2011, Beijing, China.
Copyright 2011 ACM 978-1-4503-1096-3/11/12 ...$10.00.

1. INTRODUCTION
“There’s An App For That”, according to Apple, is a

pretty good description for the unprecedented growth of the
mobile application market in the last few years. Mobile ap-
plication developers have created “apps” for almost every
purpose one can think of. Those applications can be eas-
ily obtained from online market places for every popular
mobile device operating system: Android Market (Google),
App Store (Apple), Blackberry App World (RIM), Ovi Store
(Nokia) and Windows Marketplace (Microsoft). On Apple’s
App Store, there are currently more than 445,000 iOS apps
[2]. The Android Market offers over 275,000 mobile applica-
tions and is currently growing by about 25,000 apps every
month [3]. A worldwide mobile application store revenue of
$15.1 billion is expected by Gartner research in 2011 [6].

In January 2011, Appcelerator and IDC surveyed 2,235
developers on perceptions surrounding mobile operating sys-
tem priorities and mobile development plans in 2011 [1]. The
major general trends for mobile computing can be summa-
rized by the following three points:

• “Always connected, personal and contextual”. This is
the main slogan for the future. Besides cloud services,
the integration of social and contextual services will
define the majority of mobile experiences.

• Rapid Development: on average, each developer will
work on 6.5 different mobile applications in 2011 (2010:
2.3). The main goal is to minimize time-to-market and
update cycle time for not falling behind.

• Rapid Innovation: apps are becoming more and more
complex and dozens of features are added.

Although more and more complex and feature-enhanced
mobile applications are developed, the time spent for devel-
opment, evaluation and testing should at the same time be
less than 50% of the time spent in the years before, since
the developers should on average work on double the num-
ber of mobile applications [1]. Integrated development envi-
ronments (IDEs) and device emulators, which are available
for all major platforms, support the development process.
But debugging and testing of mobile applications are still
largely open issues. Especially context-aware applications,
which are dependent on the various sensors of mobile de-
vices and live data, cannot be reasonably tested currently
as it would be desirable with the available tools: there is no
point in “sense making” without the ability to sense! Due to

the insufficient sensor simulation possibilities of the device
emulators, the testing has often to be carried out manu-
ally on real hardware and outside of the actual development
systems. This consumes a lot of time and personnel ex-
penditure. At the same time, the results from testing in
artificial lab environments can only cover a very limited set
of scenarios.

In this paper, we describe the idea and the implementa-
tion of a toolchain that facilitates and accelerates the com-
plete mobile application creation process. By shifting the
majority of the testing and debugging process into a virtual
environment with a powerful simulation engine and back-
ground middleware, the overall development time can be
minimized. Automated testing with varying sceneries and
scenarios can be easily performed with it. The coupling of
a virtual mobile device in the simulation with a device em-
ulator further allows testing of mobile applications that can
run on real devices without changes. For our research, we
have chosen the open source mobile operating system and
software-platform Android [17], since changes to the device
simulator or system itself can be done very easily with the
source code available. The principles are though applicable
for all mobile operating systems as the development follows
similar approaches currently.

2. CURRENT SITUATION AND RELATED
WORK

The current situation for mobile application development
is described at the example of the Android platform. For
getting started, a software development kit (SDK) is pro-
vided1. It consists of a cross-compilation toolchain and the
Android device emulator which can load prepared system
images for the different Android versions and hardware plat-
forms (phone or tablet). A plugin for the integrated develop-
ment environment Eclipse simplifies the source code creation
and code debugging on the devices. It can further be used
to control the Android emulator. The emulator offers set-
tings for changing hardware values. For example, the screen
resolution and density or the SD card size can be config-
ured. During runtime, only a few sensors can be used and
controlled:

• GPS or, more general, the position information from
a GNSS (Global Navigation Satellite System), is sup-
ported when a NMEA 0183 compliant GPS device is
connected to the host.

• The network connectivity and the battery status can
be changed during runtime.

• The camera is only displaying a test pattern with a
floating square on a checkerboard (Figure 1(a)). It
cannot be fed by any external source.

A main issue is the lack of intuitive sensor simulation sup-
port in all development environments. There is no built-in
possibility to set the values for the different sensors that are
commonly integrated in mobile devices, such as accelerom-
eter, gyroscope, proximity or light sensor in a realistic way.

Since the emulator does not offer any support for external
sensor data, except a real GPS device which would only emit

1Android SDK: http://developer.android.com/sdk/
index.html

(a) The default, fixed camera preview of the Android emu-
lator.

(b) The Samsung Sensor Simulator GUI. It enables to set
several sensors’ data for use with the Android emulator.
Source: [22]

Figure 1. The camera preview of the Android em-
ulator (Fig. 1(a), top) cannot be changed without
adding third-party code to the application that may
influence the run-time behavior. The Samsung Sen-
sor Simulator (Fig. 1(b), bottom) can be used to
adjust sensor values for the Android emulator.

a static position, there are several third-party approaches
for adding those capabilities. The OpenIntents SensorSim-
ulator [18] is a client-server application that allows setting
accelerometer, compass, orientation and thermometer data.
A background service has to run on the Android simulator
and wrapper classes have to be used in the application in-
stead of the standard Android SensorManager. The server
application (on the host PC) comes with a graphical user
interface (GUI) that allows to change the different sensor
values via sliders and to set the device’s orientation via a
simple 3D representation that can be manipulated by the
mouse. Gibara offers a similar client-server based solution
for the camera [7]. By using a wrapper class in the applica-
tion, one can feed recorded videos or live camera image from
a webcam to the app. A big disadvantage of both solutions
is that one has to add additional code to their application
in order to use the simulated data. But adding code for
performing a simulation can heavily influence the applica-
tions runtime-behaviors. In the worst case it can even hap-
pen that two different versions of an application have to be
maintained: one for the emulator with the simulated sensors
and one for the real device. The Samsung Sensor Simulator
[22] is similar to the OpenIntents SensorSimulator, except
for the fact that Samsung delivers a modified system image
for the Android simulator. This allows the developers to use
the standard Android API functions. Its GUI is depicted in
Figure 1(b). In addition to the live manipulation of the val-
ues, the Eclipse-based tool allows to record and playback
sensor data scripts. With robotium [9] there is a user sce-
nario testing tool available for Android. It allows black-box
testing of Activities, Dialogs, Toasts, Menus and Context
Menus.

The situation is similar for other mobile operating systems
and platforms. Apple’s iOS Simulator does not support any
hardware sensor simulation. The location framework returns
a fixed unchangeable location on the simulator. Microsoft’s
Windows Phone Emulator, which comes with the Windows
Phone SDK, has a better sensor simulation support. The
accelerometer sensor simulator offers a 3D view for chang-
ing the phone’s orientation. It can further replay recorded
movements such as a shake input. The included location
sensor simulator allows sending position-changed events by
choosing a position on a map view. The BlackBerry simula-
tor supports changing the tilt and orientation of the simu-
lated smartphone in an OpenGL 3D view. The GPS position
can be set via input fields. It further enables to simulate a
movement from one GPS position to another by specifying
a speed value. The Symbianˆ3 emulator offers a position
and route simulation tool. Samsung’s smartphone platform
bada comes with the so called Event Injector. This applica-
tion allows to change settings of the emulated bada device
and to inject events such as incoming calls or plugging in
of ear phones. Besides setting the location via a map view,
the application allows simulating values of accelerometer,
magnetometer, tilt sensor and proximity sensor. The emu-
lator’s camera can be fed through a connected webcam. The
support of NFC simulation is a unique feature of the bada
SDK. But since all these platforms are closed source, it was
decided to use the open source platform Android. Basically
all of the mentioned emulators can be coupled to our solu-
tion. One needs only to adapt the system to the interfaces
of the respective emulators.

The idea of shifting the development and evaluation of

new hardware and software into the virtual space is not com-
pletely new. Virtual product development is today used in
most branches for designing, creating and evaluating early
prototypes of an idea. Dongsik has shown a method for de-
sign evaluation of mobile devices using virtual reality based
prototypes [10]. An approach from Lister et al. allows cre-
ating a 3D mock-up of an electronic device by simulating
the complete hardware on system level [16].

3. ENHANCED MOBILE APPLICATION
DEVELOPMENT

With the currently available development tools, it is not
possible to create comprehensive realistic test-scenarios which
can be performed automatically for sensor dependent ap-
plications. For this reason, we have created an extended
and improved toolchain for the development, allowing test-
ing more aspects of the new app software on mobile devices
such as smartphones and tablet PCs. Instead of simply ex-
tending and combining the available sensor simulators, we
decided to create a holistic solution that allows on the one
hand automated and repeatable testing, and on the other
hand a realistic and intuitive view and interaction method
with the mobile device. To satisfy the requirements of the
future mobile application development, our toolchain is de-
signed to support:

• Simulation of complex interaction scenarios by taking
the physicality of objects and humans into account.
An example could be touching a physical object with
the mobile device, e.g. for reading a NFC tag.

• Generation of pro-active, predicative and random data.
An example could be the context- and location-based
provision of multimedia data, e.g. in a confined room
inside a building.

• Simulation of a complete mobile system (not only the
software part) in order to create an overall “better”
system. An example could be novel interactions, e.g.
as indicated by the MagicPhone [26] scenario.

• Rapid development for interactive multimodal (mo-
bile) applications. An example could be the rapid pro-
totyping of an interactive public-private display inter-
action.

In order to reach these goals, we decided to use the con-
cept of virtual prototyping [23]. The basis of the toolchain
is a virtual environment, in which a 3D model of a mo-
bile device can be operated. This is far more intuitive than
shifting 2-dimensional sliders in external GUIs for changing
3-dimensional sensor values. The device is made functional
by a software system that is interconnected with the virtual
environment system and at the same time with the mobile
device emulator.

3.1 ROS as middleware for
distributed sensor-actuator systems

Based on our former research on the simulation of intel-
ligent environments [21], we have chosen the Robot Oper-
ating System (ROS) as middleware. ROS is one of the ma-
jor middleware systems in the domain of robotics, running
for example on Willow Garage’s PR2 [5] or the Fraunhofer
Care-o-Bot III [8]. It has also been used for immobile robots

(ImmoBots) such as intelligent environments or ambient as-
sisted living (AAL) environments [15]. The Cognitive Office
[20] is, for example, a fully featured intelligent office envi-
ronment that uses the ROS as background system for the
real implementation and for a complete 3D simulation. The
main advantage of this middleware is that a huge set of
drivers and applications are already available. It provides
device drivers, hardware and software abstraction, message
passing, visualization and simulation tools (2D and 3D). In
contrast to our former work, we do focus in this work on
the mobile devices in intelligent environments and not the
environments themselves.

The messages passing system allows fast interconnection
of different so called nodes. There are several standard mes-
sage types for exchanging basic types like string, integers or
floats, but also more complex message types for transporting
objects’ poses, image data or point clouds. For exchanging
special data, one can add new message types. The message
system together with the hardware and software abstraction
allows rapid development of additional instances for con-
trolling or influencing the simulation flow. For example, if
one wants to add noise to a simulated sensor value, a node
for performing the biasing can be added between the sensor
value publisher and the node that reads the value.

3.2 3D simulator Gazebo
In order to create a simulation that is something like a

synthetic mirror of real world, 3-dimensional simulation is
performed. The simulation is based on the robotic 3D sim-
ulator Gazebo [13]. It uses OGRE [25] for 3D rendering and
the Open Dynamics Engine (ODE) rigid body dynamics li-
brary [24] for simulating a realistic physical behavior of vir-
tual objects. The objects for the virtual environment can be
created with all common 3D modeling tools such as Blender,
Cinema4D or 3ds Max. The meshes can be connected via
different types of joints that confine the degrees-of-freedom
in order to enable the desired movements. By defining a
mass, inertia and friction values for the virtual objects, the
physics engine ODE can simulate their dynamic behavior in
a realistic way.

The simulation tool Gazebo uses a robot description mark-
up language which can be utilized for describing different
kinds of intelligent robots or objects [11]. Each object con-
sists of graphical primitives and corresponding collisions ma-
trices. These primitive links can be connected via different
joints. The joints and links can react on physical collisions
in a realistic way. The collisions can at the same time also be
used for launching events in the middleware. Such an event
could be touching a sensor (e.g. a light switch) in the sim-
ulation, triggering the home automation system. The com-
munication is bidirectional so that the middleware is able
to control or modify the simulation as well as responding to
simulation events. Since the ROS middleware can monitor
and control virtual as well as real objects, it is also possible
to link the real world with the virtual simulation.

An advantage of the Gazebo simulator, compared to other
robotic sensor simulators, is the virtual sensor and actuator
system. Sensor and actuator plugins can be assigned to any
object in the simulation. Examples of available sensors are
cameras, laser scanners, contact switches, force sensors or
inertial measurement units (IMUs). Those sensors can be
used as templates for creating other modules. For example,
the laser scanner sensor could be used to model a proximity

sensor [14]. It is also possible to simulate a simple battery
unit that can be loaded and drained [4]. This is especially
of interest for simulating mobile devices that should bear a
realistic behavior. In order to model a mobile device, it is
also important to have virtual displays that can be attached
to any surface. For that reason, we have developed such a
plugin for Gazebo which is available from our public ROS
repository2.

Gazebo is fully controllable through the ROS middleware.
The physical dynamic values of every object in the simula-
tion can be requested through a predefined background ser-
vice. For controlling objects in the 3D simulation, one can
apply force and wrench to the individual elements. Available
route planning nodes can be used for automatic path gen-
eration through any scenery, what can simplify the creation
of automated test-cases. For manual evaluation of a system,
Gazebo offers an intuitive GUI for interacting with the el-
ements in the simulation. Users can exert rotational and
translational force to the physical objects. The advancing
simulation time allows the evaluation of temporal behavior.
Depending on the complexity of the scenery the simulation
is conducted in, a faster-than-real-time simulation can be
performed, if desired.

3.3 Android emulator
For simulating mobile applications that can also run on

real devices without using any wrapper classes in the app
itself, the Android emulator had to be modified. The prin-
ciple of the system shall be described by the example of the
added camera support. In order to feed the camera with any
video stream from a ROS image topic that is published by
the camera of the virtual mobile device in the simulation,
a ROS node had to be added to emulator’s system image.
For that reason, we have developed a minimal ROS client in
C++ that can replace the current fake hardware driver of
the emulator which is responsible for drawing the test pat-
tern. Every time an application is using the Android camera
API, the ROS node starts, connects to a defined ROS mas-
ter and subscribes to the image topic on which the virtual
device’s camera publishes its images. Whenever new image
data arrive, they are copied to Android’s camera buffer that
can be accessed via the API. The same modification has
been done for the accelerometer which can be accessed via
the SensorManager API. The values for the accelerometer
are calculated from the current physical dynamic parame-
ters of the virtual mobile device in the simulation. Similar
modifications have to be done in order to enable the other
supported sensors that are described in the next subsection.

For streaming the content of the Android emulator’s dis-
play back into the virtual environment, a VNC server was
installed on the emulator. This allows pushing the current
state of the user interface back in the simulation environ-
ment. A user “sees” what he would see on the device in the
real environment. This allows realistic user interface evalu-
ations. A VNC-to-ROS image topic converter3 connects to
the VNC server and our created virtual display maps the
image onto the virtual device’s display. The VNC connec-
tion can also be used for sending inputs from the virtual
environment to the Android emulator. This allows simulat-
ing complete interaction scenarios. For enabling the various

2https://vmi.lmt.ei.tum.de/projects/ros
3VNC to ROS image topic converter: http://www.ros.org/
wiki/vnc_image_client

Virtual Environment

Mobile device simulator

Sensor data
from the virtual environment

Output data

Testing instance

Control test flow

generated
Sensor data

Figure 2. The structure of the proposed and integrated toolchain. A central testing instance coordinates the
test flow and generates sensor data that cannot be derived from the virtual environment. It is also responsible
for the evaluation of the device emulator’s output. It allows recording and playback of experiments and thus
simplifies the development process.

network connections from and to the Android system run-
ning on the emulator, virtual private network (VPN) sup-
port has been added by reconfiguring and recompiling the
Android kernel. OpenVPN [19] is used for creating the VPN
connection. The connection is automatically established at
start-up.

3.4 The overall system
For the coordination and evaluation of automatic test sce-

narios, a central testing instance has to be added. The struc-
ture of the overall toolchain is depicted in Figure 2. The
testing instance is responsible for the evaluation of the em-
ulator’s output. It also coordinates and controls the flow of
the test process by sending commands to actuators of the
virtual environment or by applying force to any involved
physical object. It is further used to generate some sensors’
data that cannot be simulated (yet) in the virtual environ-
ment, such as temperature or air pressure.

The virtual environment is simulated by Gazebo. The sen-
sor data and camera images that are derived directly from
the simulation are directly passed to the mobile device sim-
ulator. Currently, only the device emulator’s display output
is sent back to the virtual environment.

At the moment, we can simulate with our implemented
toolchain the following sensors:

• Accelerometer and gyroscope by reading out the
current position and orientation of the virtual model
and its current linear and angular velocities.

• Camera via a built-in view frustum based virtual cam-
era model.

• Light sensor by using a camera and calculating the
image intensity.

• Proximity sensor by using a modified version of the
included laser scanner sensor.

• GPS by calculating the latitude/longitude from the
x,y,z coordinates.

• NFC reader that is triggered through a collision of
NFC enabled objects.

• Battery status through the available battery model.

We have further created models for supporting the simu-
lation of network connectivity, magnetic sensor, NFC writer
and microphone that are not yet implemented. The follow-
ing output devices are currently supported in the toolchain:

• Light emitting diodes (LEDs) and displays through
our implemented dynamic texture.

• Projectors by using a modified version of the ROS/
Gazebo integrated texture projector.

• Speakers via the Gazebo integrated Open Audio Li-
brary (OpenAL)4.

We intend, as part of our future work, to support the
usage of haptic feedback in the simulation by adding virtual
vibration motors.

4. SAMPLE DEVELOPMENT SCENARIOS
For the evaluation of the created toolchain and to high-

light its potentials, we carried out several experiments using
especially the camera system of the virtual device and the
NFC reader. A comparison of the testing with our intro-
duced toolchain and of manual testing on a real phone is
used to show the advantages of the virtual prototyping ap-
proach.

4.1 Indoor localization using
NFC tags and QR codes

In the first experiment we compared the testing process of
an indoor localization method using near field communica-
tion (NFC) tags and QR codes. The NFC tags and QR codes
are affixed to door plates in one of our institute’s corridors.
The code and the tag store the position information of the
respective room. The virtual representation of the corridor
is depicted in Figure 3. It was modeled using an extended
interior design application. The scenery is fully textured
and true to scale. The floor and wall textures correspond to
the real world.
4Open Audio Library: http://connect.creativelabs.
com/openal/default.aspx

Figure 3. The Gazebo 3D simulator is showing the
virtual representation of the floor. (1) The door
plates next to the doors contain a QR code and a vir-
tual NFC tag. (2) The wall-mounted posters show
the same content and are at the same position as
in the real corridor. The fully textured and true to
scale model allows performing a rich simulation.

In the scenario a mobile device user walks along a corridor
and scans several QR codes or NFC tags, in order to get their
current position. This information could, for example, be
used for indoor navigation solutions. For testing the scenario
with a real device, the tester has to walk every time along
the corridor or to use fake tags at their desk. Testing and
debugging a navigation solution in this way is very hard
and requires a good power of imagination. However in the
virtual environment, the scenario can be played completely
without leaving the office. Using one of the available route
planers for ROS allows an effortless conduction of automated
test scenarios. By formulating different (randomized) route
constraints for every run, it is possible to create dozens of
tests that vary only slightly, as it would be the case in the
real world. The record and replay ability of ROS can used
to save special test cases. This is important for debugging
unforeseen problems.

Figure 4 shows a comparison of the real and the simulated
environment. The QR code that is depicted on the door
plate is detected in the real as well as in the virtual scenario.
The position can be derived by evaluating the encoded data.
For reading out the NFC tag, the real phone has to be put
directly above the white circle in the lower right of the plate.
The triggering of the read out on the simulated device is
working similar. As soon as a collision between the NFC
enabled virtual door plate and the virtual mobile device is
detected, the data stored on the NFC tag is sent to the
Android emulator. In a future version, the NFC readout
can be triggered when the virtual device approaches a NFC
tag and the distance falls below a definable threshold.

In Figure 5 the lighting capabilities of Gazebo are shown.
The depicted example of a QR code under difficult lighting
conditions can, for instance, be used to evaluate the perfor-
mance of QR code readers. Reflective objects can be realized
by adding appropriate shader and material scripts. This can
be done without changing any source code of the simulation
tools.

4.2 Indoor localization using
visual information

In another indoor localization scenario, the toolchain was
used without the Android emulator binding. The virtual

(a) Photography of the real world test scenario. The QR
code holds an URL that contains the organizational room
number. The white circle on the lower right of the door
plate is a passive NFC tag.

(b) Screenshot of the virtual test scenario in Gazebo. The
doorplate contains the same information as the real one.
The NFC functionality is available on the whole door plate.

Figure 4. The real and the virtual Android powered
smartphones in front of a door plate with QR code
and NFC tag.

device is completely driven by the ROS node that made use
of the camera images. In this scenario, the Parallel Tracking
and Mapping (PTAM) [12] algorithm is used for estimating
the camera pose in an unknown scene. Since the algorithm
is not yet running on a mobile device, the testing in the
real world requires to record a video and to recode the video
to a format that is compatible with the application that
performs the algorithm. For every desired test-case, a new
video has to be captured. This consumes a lot of time and it
is likely that one will be satisfied with only a small number
of different recorded scenarios, which would lead to a strong
limitation of test cases.

In order to allow a more comfortable evaluation of the im-
plemented algorithm, ROS support was added to the PTAM
application. This enabled to couple the visual localization
algorithm to any ROS node that publishes image messages.
In our case, it was connected to the camera data of the vir-
tual mobile device in the simulation. Initial results are dis-
played in Figure 6: The real environment is captured and
analyzed (Figure 6(a)). In the simulation environment, the

Figure 5. High fidelity shadows can be simulated in
Gazebo. The example shows a simulated QR code
under difficult lighting conditions.

same poster is shown (Figure 6(b), the right poster). The
areas and the density of the identified feature sets (colored
dots in the image) are comparable. This indicates that the
simulation approach does provide sufficient realism for the
development.

4.3 Further possible application areas
Further application areas are home automation, and inter-

action with public and private displays, 2D touch interfaces
and multimedia systems or novel interaction paradigms such
as MagicPhone [26].

They all do require similarly rich sensor data from the
mobile device which we believe our enhanced development
toolchain can provide in a realistic way. The ongoing effort
on improving Gazebo’s material and lighting support5 will
further enhance its rendering fidelity and thus allow a more
realistic simulation of vision-based projects. The incorpora-
tion of human models in the simulation can be used for per-
forming realistic simulations of human machine interfaces.
The simulation environment offers further the possibility of
modeling and evaluating new input and output devices be-
fore one has to create any real hardware prototype.

5. CONCLUSIONS & FUTURE WORK
We have identified current shortcomings in the develop-

ment process and development tools of current mobile de-
vices at the example of the Android platform. We extended
the existing toolchain by simulation capabilities, allowing
the developer to access rich and realistic sensor data already
during the development stage. This is expected to speed up
the development of novel applications itself and to reduce
the time needed for manual testing. We have implemented
several examples of common interaction with mobile devices
in intelligent environments to verify our approach. We out-
lined further application areas and thereby the potential and
future impact of our implementation.

Future work will include a more formal verification by
comparing directly the development of identical applications
with and without the presented approach to obtain qualita-
tive and quantitative data from professional Android app

5Gazebo Development Roadmap: http://www.ros.org/
wiki/simulator_gazebo/Roadmap

(a) PTAM performed on real video input. The colored dots
indicate feature sets that are used by the algorithm.

(b) PTAM in the virtual corridor. The grid indicates that
the algorithm has found a reference plane and is trying to
keep track of it.

Figure 6. The PTAM algorithm highlights the de-
tected features (colored dots in the image) and
draws a plane into the image. The comparison of
the posters to the right shows that the algorithm
performs almost identical in the real and the virtual
scene.

developers. The toolchain will also be used within the scope
of our research oriented teaching. Students will work on
various indoor location systems and the results can be com-
pared to project outcomes from former years in which the
presented toolchain had not been used.

In order to evaluate the realism of the simulated sensors in
comparison to real sensors, appropriate metrics need to be
defined. Future work will include finding those metrics that
allow identifying weaknesses and strengths of the introduced
solution.

6. ACKNOWLEDGMENTS
This work has been funded in parts from the German

DFG funded Cluster of Excellence ‘CoTeSys - Cognition for
Technical Systems’.

7. REFERENCES
[1] Appcelerator Inc. and IDC International Data Group,

Inc. Appcelerator IDC Mobile Developer Report,
January 2011.
http://www.appcelerator.com/company/survey-

results/mobile-developer-report-january-2011/,
Jan. 2011.

[2] AppShopper.com, LLC. App Shopper – Apps for iOS.
http://appshopper.com/, Sept. 2011.

[3] AppTornado GmbH. AppBrain – Android Statistics.
http://www.appbrain.com/stats/number-of-

android-apps, Sept. 2011.

[4] K. Conley and J. Hsu. pr2 gazebo plugins – ROS
Wiki.
http://www.ros.org/wiki/pr2_gazebo_plugins, Jan.
2010.

[5] S. Cousins. ROS on the PR2 [ROS Topics]. Robotics &
Automation Magazine, IEEE, 17(3):23–25, 2010.

[6] Gartner, Inc. Gartner Says Worldwide Mobile
Application Store Revenue Forecast to Surpass $15
Billion in 2011.
http://www.gartner.com/it/page.jsp?id=1529214,
Jan. 2011.

[7] T. Gibara. Obtaining a Live Camera Preview in
Android.
http://www.tomgibara.com/android/camera-source,
May 2010.

[8] B. Graf, U. Reiser, M. Hagele, K. Mauz, and P. Klein.
Robotic home assistant Care-O-bot 3 - product vision
and innovation platform. In Advanced Robotics and its
Social Impacts (ARSO), 2009 IEEE Workshop on,
pages 139–144, nov. 2009.

[9] Jayway. robotium – User scenario testing for Android.
http://code.google.com/p/robotium/, Aug. 2011.

[10] D. Jo, U. Yang, and W. Son. Design evaluation using
virtual reality based prototypes: towards realistic
visualization and operations. In Proceedings of the 9th
international conference on Human computer
interaction with mobile devices and services,
MobileHCI ’07, pages 246–258, New York, NY, USA,
2007. ACM.

[11] Ken Conley. XML Robot Description Format
(URDF). http://www.ros.org/wiki/urdf/XML, July
2011.

[12] G. Klein and D. Murray. Parallel tracking and
mapping for small AR workspaces. In Proc. Sixth
IEEE and ACM International Symposium on Mixed
and Augmented Reality (ISMAR’07), Nara, Japan,
November 2007.

[13] N. Koenig and A. Howard. Design and use paradigms
for gazebo, an open-source multi-robot simulator. In

Intelligent Robots and Systems, 2004.(IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference
on, volume 3, pages 2149–2154. IEEE, 2004.

[14] M. Kranz, P. Holleis, and A. Schmidt. DistScroll - a
new one-handed interaction device. In Proc. 25th
IEEE International Conference on Distributed
Computing Systems Workshops, pages 499–505, 2005.

[15] M. Kranz, T. Linner, B. Ellmann, A. Bittner, and
L. Roalter. Robotic Service Cores for Ambient
Assisted Living. In 4th International Conference on
Pervasive Computing Technologies for Healthcare
(PervasiveHealth2010), pages 1–8, 22–25 March 2010.

[16] P. Lister, P. Watten, M. Lewis, P. Newbury,
M. White, M. Bassett, B. Jackson, and V. Trignano.
Electronic simulation for virtual reality: virtual
prototyping. In Theory and Practice of Computer
Graphics, 2004. Proceedings, pages 71–76, june 2004.

[17] Open Handset Alliance. Android Open Source
Project. http://source.android.com/, Aug. 2011.

[18] OpenIntents. SensorSimulator. http://code.google.
com/p/openintents/wiki/SensorSimulator, Aug.
2011.

[19] OpenVPN Technologies, Inc. OpenVPN – Open
Source VPN. http://openvpn.net/, July 2011.

[20] L. Roalter, M. Kranz, and A. Möller. A Middleware
for Intelligent Environments and the Internet of
Things. In Ubiquitous Intelligence and Computing,
volume 6406 of Lecture Notes in Computer Science,
pages 267–281. Springer Berlin / Heidelberg, 2010.
10.1007/978-3-642-16355-5 23.

[21] L. Roalter, A. Möller, S. Diewald, and M. Kranz.
Developing Intelligent Environments: A Development
Tool Chain for Creation, Testing and Simulation of
Smart and Intelligent Environments. In Proc. of 7th
Intl. Conference on Intelligent Environments 2011,
pages 214–221, July 2011.

[22] Samsung Electronics Co. Ltd. Samsung Sensor
Simulator. http://innovator.samsungmobile.com/
down/cnts/toolSDK.detail.view.do?platformId=

1&cntsId=9460, May 2011.

[23] J. J. C. Schaaf and F. L. Thompson. System concept
development with virtual prototyping. In Proceedings
of the 29th conference on Winter simulation, WSC
’97, pages 941–947, Washington, DC, USA, 1997.
IEEE Computer Society.

[24] R. Smith. Open Dynamics Engine – User Guide.
http://me.seu.edu.cn/RCBaoMing/2007/download/

ode-latest-userguide.pdf, Feb. 2006.

[25] Torus Knot Software Ltd. OGRE – Open Source 3D
Graphics Engine. http://www.ogre3d.org/, May
2011.

[26] J. Wu, G. Pan, D. Zhang, S. Li, and Z. Wu.
MagicPhone: pointing & interacting. In Proceedings of
the 12th ACM international conference adjunct papers
on Ubiquitous computing, Ubicomp ’10, pages
451–452, New York, NY, USA, 2010. ACM.

