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Abstract- Current driver assistance systems such as Adaptive Cruise
Control (ACC) and in particular future assistance systems such as
CoUision Warning make high demands on reliability of detection and
ranging methods for vehicles within the local vicinity. Autonomous
systems such as Radar which are already integrated into a multitude
of vehicles meet these requirements to only a limited extent. As an
alternative, cooperative systems for detection and ranging will be enabled
by future Vehicle-2-Vehicle communication. But cooperative detection and
ranging also has drawbacks regarding reliability due to positioning and
transmission errors if it is applied in a standalone way.

Thus, the solution presented in this paper is a hybrid approach
combining autonomous and cooperative methods for detection and
ranging within a common architecture. A particle filter is used for state
estimation. The results are a higher detection effectiveness and a lower
position error compared to using standalone autonomous or cooperative
detection and ranging methods.

I. INTRODUCTION

Today, most traffic accidents occur due to a human false estimation
of the current situation which is the consequence of misinterpretation
or a limited amount and accuracy of information [1]. Future Situation­
aware Driver Assistance Systems [2] will support humans in their task
of driving a vehicle safely, efficiently and comfortably by exploiting
situational information of the own vehicle as well as other information
sources (other vehicles, road side units, etc). To reach this detailed
situation awareness, information on the presence and position of
vehicles in their local vicinity is of particular importance. Key enabler
for future driver assistance is hence a complete and accurate model of
their surrounding including each individual vehicle within the relevant
scope because even having no or inaccurate information of a single
vehicle may result in a perilous situation.

In order to gather information on the surrounding vehicles, methods
for detection and ranging are required. Detection and Ranging (DaR)
of objects means the determination of presence and position of these
objects relative to the own vehicle, in the latter called ego vehicle.
This information can then be used in a multitude of applications,
e.g. Adaptive Cruise Control (ACC), hazardous following distance
warning, frontal/rear-end/flank collision avoidance assistance, etc.

Objective of novel detection and ranging methods is to increase the
Detection Effectiveness and decrease the Position Error at the same
time. This paper will present a novel concept for a hybrid approach
combining autonomous and cooperative detection and ranging.

Section II gives an overview of concepts and types of detection
and ranging methods for vehicles. Causes of error that will play a
major role for the proposed algorithm will also be detailed herein.
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The proposed algorithm for a hybrid approach combining autonomous
and cooperative detection and ranging methods is provided in section
III. Initial simulation results are presented in section IV. The paper
ends with a conclusion in section V.

II. DETECTION AND RANGING METHODS

In principle, two different types of detection and ranging methods
have to be differentiated:

• Autonomous detection and ranging: Detection and ranging is
performed only by the ego vehicle without active interaction of
the target vehicle. The target vehicle stays completely passive.

• Cooperative detection and ranging: Detection and ranging is
performed in a cooperative way by information provided by the
target vehicle. The target vehicle plays an active role.

A. Autonomous Detection and Ranging
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Fig. 1. Scenario

a) Radar: A common mechanism of autonomous DaR of ob­
jects is the measurement of transit times of electro-magnetic signals.
This concept is exploited for instance by the well-established Radio
Detection and Ranging System (Radar) which uses micro waves with
a wave length of 1 millimeter up to several meters. Radar systems
used as in-vehicle sensors work in the European regulative assigned
frequency bands, i.e. the K-band at 24 GHz (until 2013 [3]) and W­
band at 79 GHz (for future usage [4]) for Short Range Radar (SRR)
applications and the W-band (76-77 GHz) for Long Range Radar
(LRR) applications [5], [6], [7]. An essential parameter in the context



of Radar systems is the half-power beamwidth () which depends on
the above mentioned frequency f and therefore the wave length A
and the effective length of the antenna D and can be calculated by
the equation [8]:

These steps will be described more in detail in the following
paragraphs:

a) Self-positioning: A promising solution for self-positioning
is Global Navigation Satellite System (GNSS) because of its global
availability in outdoor areas. Although GNSS is the most promising
solution for positioning vehicles at present, other variants, e.g.
GSMlUMTS signal measurements or dedicated road infrastructure,
have to be mentioned as well but are not further studied in this paper.
More information on self-positioning can be found in [12].

GNSS is based on lateration of undirectional Time of Arrival (ToA)
measurements and therefore several measurements from different
satellites are required to get a complete position estimation. With
elimination of impossible solutions at least two measurements to
individual non-collinear satellites for a 2D positioning or three
measurements for a 3D positioning are required. Normally, a further
satellite is necessary for time synchronization between the space
segment and the user terminal.

The ToA measurements of the user terminal can be based on two
different levels:

• Code based measurements: ToA is measured on code level
(synchronization on chip basis)

• Carrier based measurements: ToA is measured on carrier level
(synchronization on carrier phase basis)

Sources for inaccuracy are up to delays in signal runtime resulting
in erroneous pseudorange p calculation:

(2)

(I)

8A ~ 28· sin(O/2) = 28· sin(~;)

S slant range

The Radar sensors available on the market today suffer from low
angular resolution because of a half-power beamwidth of more than
6° due to aperture size limitations. According to Rasshofer et al. [10]
this results in poor target separation in long and medium ranges. As
an example, the angular resolution in a slant range of 150 meters
according to equation (2) is more than 17m and thus spans at least
over the two adjacent lanes with a lane width of 3, 50m according
to German standard cross-section RQ-33 [II] for a 6-lane autobahn
(see fig. 1). An application such as ACC cannot adapt the optimal
speed in this situation because it cannot infer whether there is one
or more vehicles within the critical scope.
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K is known as the beamwidth factor (e.g. O.88(rad) ~ 50.76° for
uniform distribution rectangular apertures [9]). The angular resolution
SA of a Radar, which defines the minimum distance at which two
equal targets at the same range can be separated, can be calculated
by:

c is the velocity of signal propagation, ~T is the theoretic signal
transit time following line of sight, () is the true geometric range
and ~£5 is the additional signal transit time that emerges due to
satellite clock offset, satellite orbit dislocation, ionospheric and tro­
pospheric refraction, receiver clock offset and multipath propagation.
The former two error types, i.e. satellite clock offset and orbit
dislocation, are specific to a certain satellite and only depend on
this satellite. Atmospheric refraction errors depend on satellite and
receiver position. Receiver clock errors and multipath errors strongly
depend on the receiver and its local environment.

b) Position transmission: To inform the ego vehicle of position
relevant data in time, the target vehicle requires a reliable communica­
tion channel which allows fast channel access and transmission times.
Due to channel setup delays and infrastructure as prerequisite, cellular
systems (e.g. GSMIUMTS) are suitable to only a limited extent.
Preferable is ad-hoc networking with fast channel access schemes
such as Vehicle-to-Vehicle (V2V) communication based on Wireless
LAN.

WLAN based V2V communication is currently in the standard­
ization process under Wireless Access for Vehicular Environments
(WAVE) including IEEE 802.llp and IEEE PI609.1-4 in the U.S.
and under ETSI TC ITS and the Car-2-Car Communication Consor­
tium in Europe. Besides unicast and multicast as data distribution
mechanisms geo-based anycast and broadcast addressing will be de­
veloped. CSMAICA is used for medium access control which requires
acknowledged message transmission for the detection of transmission
errors as a result of packet collisions. In order to avoid the broadcast
storm problem broadcasting is not feed back by acknowledgements
and thus subject to unreliable message transmission. Packet loss
strongly depends on the channel load which is influenced by the
number of channel accesses, the message length and the number of
vehicles within the network. The maximum allowed power will be
between 33-44 dBm EIRP with an expected range of up to 1000

Fig. 2. Radar distance measurements

Modern Radar sensors use filter techniques to overcome the
problem of poor angular resolution but show constantly significant
measurements errors, target losses or "ghost targets" (see fig. 2). The
figure shows Radar measurements (stems) recorded on a real test run.
The real distance to the target vehicle is depicted as a solid line.

b) Lidar: Another autonomous DaR method which uses laser
instead of microwaves is called Light Detection and Ranging System
(Lidar). Due to its high frequency, Lidar has a highly directional
signal propagation and shows a much higher angular resolution. But,
in contrast to Radar which do not show significantly deterioration in
fog, rain or snow, Lidar sensors show high sensitivity towards these
environmental influences.

B. Cooperative Detection and Ranging

In contrast to autonomous DaR methods, the target vehicle is
actively involved in cooperative DaR. Therefore, the target vehicle
cooperates with the ego vehicle by transmitting messages with
position relevant data. By receiving the position relevant information,
the ego vehicle can calculate the relative position of the target vehicle.
So basically cooperative DaR comprises three steps:

(a) Self-positioning of both ego vehicle and target vehicle within
a common reference system

(b) Transmission of the target vehicle's position to the ego vehicle
(c) Range calculation by the ego vehicle

p == c~t == C(~T + ~(5) == () + c~£5 (3)



meters. The range for message transmission can be extended by multi­
hop messaging.

c) Relative position calculation: The position relevant informa­
tion sent by the target vehicle can then be used to calculate the
position of the target vehicle relative to the ego vehicle. Basically
there are three different types of relative positioning:

• Absolute position based relative positioning by differencing
of two absolute positions. Target vehicle and ego vehicle have
to agree on a common reference system, such as WGS-84. This
method is influenced by the whole set of GNSS measurement
errors described above.

• Code based relative positioning uses a Time Difference of
Arrival (TDoA) method with several simultaneous measurements
on code basis (see above). Ego vehicle and target vehicle have
to use identical satellites at the same time. Depending on the
algorithm the following errors can be eliminated:

- Single differencing between receivers eliminates pseudor­
ange errors emerging from satellite clock bias, satellite orbit
dislocation and ionospheric and tropospheric refraction. The
different types of errors have a high correlation when
signals emitted from the same satellite at the same time
have a similar propagation path which is valid within short
distances between ego vehicle and target vehicle as it is
considered in this paper.

- Double differencing between satellites additionally elimi­
nates errors emerging from receiver clock offsets.

• Carrier based relative positioning uses TDoA on a carrier
basis. Besides single and double differencing, triple differencing
between epochs has to be considered in order to quantify integer
cycle ambiguity.

Depending on the type of algorithm used for cooperative relative
positioning, different types of position relevant data has to be
transmitted between the target vehicle and the ego vehicle. Whereas
absolute position based relative positioning has lower acccuracy but
can be encoded in a few bytes (e.g. 2x2 Bytes (Latitude-Longitude)
according to [13]), pseudorange based relative positioning has higher
accuracy but requires about 10 times as much data to encode (e.g.
8x5 Bytes = 8 pseudorange measurements encoded in 5 Bytes).
Carrier phase based relative positioning has a even higher accuracy
but requires considerably longer messages. Evidently, for reaching
higher accuracy longer messages have to be accepted. Thus for the
final protocol specification a respective tradeoff between message
length and position accuracy has to be defined.

III. HYBRID DETECTION AND RANGING

Goal of DaR methods that conform to requirements of a Situation­
aware Driver Assistance System is to gain a reliable and accurate po­
sition estimation of all target vehicles within the relevant scope. A lot
of work has already been done in fusioning of different autonomous
systems (e.g. Radar & Lidar) but all these systems mainly suffer
from a common subset of error causes which have strong influence
on reliability and accuracy. Examples as described in the previous
section are the shadowing by obstacles (e.g. in road curvatures),
sensitivity towards environmental influences (e.g. fog, rain, snow)
and a narrow detection zone. On the other hand, cooperative DaR
depends on the active participation of the target vehicle and therefore
strongly depends on the penetration rate as well as the reliability
and accuracy of self-positioning and the wireless transmission of
position relevant information. The hybrid approach presented in this
paper therefore combines autonomous and cooperative DaR methods

in a hybrid approach including an adaptive sensor fusion resulting
in an increased reliability and accuracy which will be shown in the
simulation results in section IV.

A. Reliable and accurate target tracking

Core component of our hybrid approach is the sensor fusion
algorithm for the combination of autonomous and cooperative DaR.
Independent of the type of sensor measurements are subject to incom­
pleteness and inaccuracy. Therefore, the preferred fusion algorithm
should filter the noisy sensor measurements Zl:k over time 1 : k and
adequately infer the state space x k at time k which will include at
least the relative position of the target vehicle. The prediction step
of the dynamic state estimator is defined by:

p(xkl z1:k-l) =Jp(xklxk-l)p(Xk-ll z1:k-l)dxk-l (4)

The update step is defined by:

( I ) p(zklxk)p(Xklzl:k-l) (5)
P Xk Zl:k == p(Zk IZl:k-l)

To solve the equations, we prefer particle filtering because it allows
the usage of non-Gaussian measurement and movement noise and
non-linear measurement and movement models [14], [15]. Especially
for complex non-linear driver behavior modeling this is an essential
requirement.

In cases where both measurements, i.e. measurements of au­
tonomous and cooperative DaR can be used together, the reliability
and accuracy can be increased significantly by the dynamic state
estimation with independent measurement noises.

In the run-up to the fusion algorithm itself the independent
measurements have to be transformed to a common local reference
system. This reference system may for instance be a polar or a
cartesian coordinate system which may be aligned to a fixed direction
(e.g. geographical north pole), dynamically adjusted according to the
ego heading or even road-aligned [16]

Originally measurements from autonomous systems are to a certain
extent directional and the sensors have a fixed installation location
and orientation. Thus the measurements are already aligned to the
ego vehicle heading and position - possibly with a certain offset in
orientation and location. Depending on the type and orientation of
the local coordinate system, the measurements have to transformed
adequately.

Cooperative DaR systems are not inherently aligned to the ego ve­
hicle heading. In cases where a heading aligned coordinate system is
used the measurements have to be transformed adequately. Therefore
the heading of the ego vehicle can be estimated by analyzing the
steering angle. In order to determine the initial heading either further
sensors, such as compass or gyroscope, are required or the initial
heading has to be inferred by consecutive position measurements. For
the translocation of the measurements the antenna positions of both
vehicles have to be known. Whereas for the ego vehicle the antenna
position can easily be determined, the antenna position of the target
vehicle has to be standardized or has to be added to the position
relevant information that is sent by the target vehicle. Furthermore
the target vehicle size has to be annotated in order to allow the
ego vehicle to reference the cooperative DaR measurement to the
reflection point of the autonomous DaR independent of the target
vehicle's heading.

B. System Architecture

The overall architecture of the Situation-aware Driver Assistance
System using our hybrid approach for DaR is depicted in fig. 3.
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Fig. 5. Recall for full headway scope

c. Simulation Results

Figures 4-7 show the absolute number of vehicles (solid line), the
number of detected vehicles by standalone Radar (dark grey) and
the number of vehicles detected by our hybrid approach (light grey)
in the form of stems at the bottom of each figure. The black stems
illustrate false positives. The simulated test drive has a duration of
lOs.

The analyzed scenario is similar to the scenario shown in figure
1. The ego vehicle is driving on the left most lane of a three-lane
road. Both other lanes are heavily occupied by vehicles with slower
speed. The relevant scope of figure 4 and 6 is the scope defined by
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Fig. 4. Recall for ACC scope

T P True Positives -4 Detected targets that correspond to real vehicles within
the relevant scope

F N False Negatives -4 Undetected targets that correspond to real vehicles within
the relevant scope

Precision is a measure of exactness and specifies the probability that
a detected vehicle corresponds to a real vehicle. It is defined by:

T P True Positives -4 Detected targets that correspond to real vehicles within
the relevant scope

F P False Positives -4 Detected targets that do not correspond to real vehicles,
i.e. ghost targets, within the relevant scope

The scope in which the effectiveness is analyzed is determined by the
application that requires the information. ACC, for instance, defines
the scope as the headway of the ego vehicle up to a certain range
that depends on the current speed, the following distance, etc.

h) Position Error: The second measure, the Position Error, is
a measure for the accuracy of DaR methods. The Position Error
is defined by the root mean square error whereas the error is
the Euclidean distance between the estimated position and the real
position of the target vehicle. It is defined by:

PE= VE[ II X -x 11 2 ]
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Fig. 3. CODAR Simulation Architecture

Principally it uses autonomous and cooperative sensors as main input
for the fusion algorithm. In order to predict future movement and
align the reference system, further input, such as steering angle sensor
and compass is used. The prediction is performed by a State Model
including a realistic vehicle following model (e.g. Krauss model [17]).
Sensor errors are represented by the Sensor Model. The results of the
fusion, Le. a reliable and accurate relative position of target vehicles,
can then be used in the Situation Analysis to detect hazardous or
inefficient situations. Last, this is used to adapt vehicle effectors, e.g.
adjust the ACC controller or inform the driver by visual, verbal or
tactile Human-Machine Interfaces.

More information on the system architecture and the integration
into the Situation-aware Driver Assistance System as a virtual sensor
can be found in [18].

IV. PERFORMANCE EVALUATION

A. Simulation Environment

In order to validate our concepts we designed a simulation envi­
ronment that allows the simulation of cooperative and autonomous
DaR in realistic traffic environments. Within this paper we simulated
a Long Range Radar sensor for the autonomous DaR with simulated
measurement noise (a = 2m) and the measurement errors described
in section II. The cooperative DaR was based on absolute position
based relative positioning with a constant Gaussian noise (a = 5m).
Transmission errors were not modeled adequately because a small
number of vehicles and a high beaconing rate (10 Hz) of position
relevant information was used and thus sporadic message losses can
be neglected for the overall observation. An implementation of the
eODAR fusion engine based on a particle filter with 1000 particles
has been integrated into the simulation environment. 1000 particles
turned out to have a sufficiently high accuracy/effectiveness and
is computable under real-time conditions on a Intel Core 2 Duo
(2.2 GHz) with 2GB RAM. For the initial implementation a simple
random movement model and Gaussian O-mean sensor models has
been used.

B. Quantification Measures

For the quantification of DaR methods we propose two major
measures:

a) Detection Effectiveness: The Detection Effectiveness is a
measure to quantify the effectiveness of the DaR method. Rijsbergen
defines effectiveness in terms of Precision and Recall [19].

Recall is a measure of completeness and specifies the probability
that a real vehicle will be detected. It is defined by:

TP
Recall R = TP + FN (6)



the detection zone of a Radar system with 60 azimuth beamwidth
and a range of 150 m. In figure 5 and 7 we used the same range
as before, i.e. 150 m, but a larger angle of 1800

• This scope will
be in particular important for future safety applications that will take
all vehicles within the ego headway into account in order to enable
accurately timed situation-specific driver assistance.
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Evidently, in figure 4 and 6 the number of vehicles detected by
standalone Radar is nearly as high as the number of relevant vehicles
because of the optimal case that the relevant scope and the scope of
the detection sensor is identical. But it has to be recognized that this
number is affected by undetected vehicles (FN) as well as wrongly
detected vehicles (FP). The number of vehicles detected by the hybrid
approach hence is composed of:

# of relevant vehicles
# of vehicles undetected by autonomous DaR

+ # of wrongly detected vehicles
+ # of vehicle additionally

detected by cooperative DaR

For the cooperative detection we assumed a penetration rate of
equipped vehicles of 80%. Thus, not every vehicle can be detected
by cooperative DaR alone.

To get a more detailed explanation of the depicted simulation
results, figures 4-7 also show the results broken down into Recall
and Precision. The simulation clearly shows that the hybrid approach
has a more complete effectiveness (Recall) and a higher exactness
(Precision).

Fig. 8. Position Error

Figure 8 shows the Position Error of standalone Radar in contrast
to the hybrid approach. The scenario we analyzed was a winding
road (3 bends) with no other obstacles or disturbances but a single
target vehicle within a constant distance to the ego vehicle. As can
be seen in the figure autonomous DaR shows three measurement
losses resulting in high errors when the target vehicle just drive round
the curve and thus leaves the detection zone. During these periods
the hybrid approach uses cooperative DaR standalone resulting in a
higher Position Error. When the measurements from the autonomous
DaR method get valid again the Position Error decreases. Although
cooperative DaR has a considerably lower accuracy in our model the
hybrid approach shows in almost every case an improvement of the
Position Error in contrast to standalone Radar.

V. CONCLUSIONS

This paper identifies the main methods for Detection and Ranging
of vehicles and their respective causes of error. In order to overcome
these drawbacks a hybrid approach combining autonomous and
cooperative DaR has been presented. The fusion of the independent
measurements is based on a particle filter as a major part of
the CODAR architecture. The simulation results showed that our
concepts significantly increase the Detection Effectiveness quantified
by Recall and Precision and decrease the Position Error.
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