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Abstract— In this paper we report on a use case of networked
sensing technologies in the context of smart homes and specif-
ically the kitchen as scenario for our research. We adapt, use
and extend an existing middleware originating from robotics for
pervasive computing. We report on initial results towards context
recognition in this sensor enriched environment.

I. INTRODUCTION

In this paper, we present the AwareKitchen research project.

The setting for this scenario is a kitchen environment. Kitchens

are an important part of everyday life. People spend a sig-

nificant amount of time in them and do a wide spectrum of

activities like preparing and eating meals, cleaning, and many

social interactions in the families. The kitchen is in many

households an important place for meeting and exchanging

all kinds of information.

These activities also relate to many aspects of our life: personal

health and health care, nutrition, the daily routine, and many

more. Building systems and appliances that are capable of

understanding behaviors and actions in the kitchen therefore

can be generalized to be employed in other scenarios as well.

This is especially true as in the course of e.g. preparing a full

meal many tools are used - knifes, spoons, mixers, etc. This is

also the case for many other work tasks - they involve physical

tools operated by humans. Only recent advances in networked

sensing technologies enabled their unobtrusive integration in

everyday objects and environments.

Spoons and knifes are used without being perceived as tools,

they are part of the everyday environment. Augmenting these

everyday objects with sensing capabilities while keeping the

look and feel and handling of the objects untouched is chal-

lenging. Thus this would allow us to gather data in-place

and naturally - compared to laboratory settings which always

influence behavior and the way actions are performed. As

Intille et al. [1] argue, only the real-world setting allows to

collect the most valuable data that leads to the development of

the most robust and reliable algorithms. We computationally

augmented several everyday artifacts commonly found in a

kitchen and show their contribution towards user context

acquisition.

With an aging population, the number of elderly people that

need assistance, either in retirement castles or assisted living

facilities, increases. With increasing costs for assisted living

and decreasing costs for sensing systems, we believe that it

is from many perspectives more desirable to invest in helpful

technology, even if only for a few months, than to move people

out of their loved homes. Research so far focussed on “smart”

homes but without a specific focus on the kitchen as central

place in a home. We therefore concentrate our research on this

room, but the results can be generalized to other spaces.

We present two algorithms to derive the type of food currently

handled by a person cooking. Our approach looks at two

different means: a sensor-augmented knife and environmental

microphones. We report on the algorithms employed and the

results of the analysis of the force and torque sensor data of

the knife and the audio data of the microphone, both analyzed

in isolation and independently of each other.

The contribution of this work is as follows. First, we discuss

related work in the field of pervasive healthcare and activity

recognition based on the technologies we used. We consider

the results we obtain for the kitchen to be transferable and ap-

plicable to other rooms and scenarios in a smart home context.

Second, we present a novel middleware for unifying networked

sensor I/O and actor support in pervasive computing. The

Player/Stage/Gazebo middleware is a result of 10 years of

continuous work in the field of autonomous intelligent robotic

systems. It has not been reported that this middleware has

been used in pervasive computing or in the context of recent

sensor node systems. We report on our contributions towards

this middleware for enabling a better support of pervasive

computing technology, especially regarding added support for

several standard sensor node technologies. Third, we report on

the results of the application of modern sensing technology in

a kitchen environment and discuss two examples in detail.



II. RELATED WORK

Preparing and consuming food are, besides the social im-

portance of a shared space like this, the main activities in a

kitchen. The things we cook and eat have a direct impact on

our personal well being, happiness and health.

Instrumenting the places where food is processed, like kitchens

and dining rooms, can help to make people more aware of

their nutrition and hence live a better, healthier life. The

feasibility of this approach has been shown by Chang et al.

in their work on a dietary monitoring system for a dining

table [2]. We consider our kitchen and dining space to offer

more options for research and ultimately for deployment due

to the higher number and higher degree of unobtrusiveness of

the augmented devices which also comprise everyday artifacts

and specialized tools.

A. Related Work - Technological Discussion

Eating healthy already starts with buying and preparing

meals before cooking them. Recent social investigations show

that an increasing percentage of the population are overweight.

Pervasive computing technology has shown that supportive

system can raise nutritional awareness [3].

Acquiring context information from microphones in some

areas seems more suitable than computer vision approaches.

This is especially true for private settings as a home. This

probably is due to the concern of the human inhabitants

that so much additional and unconscious information can be

derived from watching a video, e.g. the mood of the person.

Microphones capture only things that happened, e.g. the usage

of the dishwasher, but not things that e.g. were looked at.

Additionally, the range of microphones can easily be restricted,

e.g. by attaching them to a surface and only capturing the

sound waves travelling through the material. Microphones can

be embedded into all kinds of artifacts and do rely on less

environmental conditions like lightning. Therefore, we chose

the audio sensor approach for one experiment to determine the

type of food handled.

Activity recognition using data acquired from environmental

microphones has been demonstrated as promising approach. In

a bathroom scenario, Chen et al. [4] were able to determine

the activity of a person in the bathroom with minimal 85%

accuracy. In this scenario, nearly all user would have rejected

any vision technology. The authors though show that reliably

activity recognition in arbitrary scenarios is possible. We could

validate this in our kitchen context.

Amft et al. [5] propose a system for acquiring bone sound

from a ear-worn sensor which allows detecting the kind of food

consumed by analyzing chewing sounds. The goal is to support

the human to change eating habits towards healthier food.

Again, by analyzing sound related to food, they are capable

of classifying more than 80% of the analyzed food correctly.

They though only used a limited set of five 5 different classes

of food. With our approach we do not try to classify greatly

distinctive food like rice and chips correctly, but to classify all

similar kinds of food, especially vegetables, correctly. In other

contexts, e.g. for activity recognition using microphones [6],

85 % accuracy seems a reasonable value for future research,

which we also achieve.

Augmenting the tools human use during their work ideally

leads to task and process optimization, well-known in e.g.

supply chain management. The goal of pervasive computing

here is to transfer this idea to novel areas. Therefore selecting

sensors and developing intelligent tools has attracted much

research effort. This also has been the case for kitchen

environments. Kitchen sinks that adapt in height to the size

of the person, proposed by Bonanni [7] in 2005, are available

as commercial products by now. In the same project, the MIT

Counter Intelligence project1, an intelligent spoon has been

proposed by Cheng and Bonanni. It is a sensor equipped spoon

that measures temperature, acidity and other environmental

dimensions directly around the spoon. The idea is to support

users while achieving their tasks in place by an integrated and

embedded system. This integrated tool support for physical

devices has also been chosen for our sensor-equipped knife [8].

The knife becomes an input devices for context acquisition.

B. Related Work - Everyday Objects

PlaceLab [1] is one of the most recently presented

intelligent environments. The amount of sensors, e.g. Mites

[9] and equipped every day objects, is huge and changeable

from test to test. The importance of real-world collected

sensor data as input for “robust and promising context

detection algorithms” [1] has been identified as one of the

key contributions of this project - along with the huge effort

of annotating the raw data.

Unobtrusively and invisible augmented everyday objects

are a key requirement for collecting data of processes and

activities. The devices, e.g. wireless sensor nodes, have to be

seamlessly integrated into the object to not change the usage

behavior. Only then useful data can be gathered. Two further

examples that achieve this are the TEA project [10] and the

MediaCup. [11].

With the force and torque sensor in the knife, we try to get

as close to the action as possible. Though not being invisible,

the sensor does only add minimal additional weight and does

not have any influence on the cutting process itself.

C. Related Work - Kitchen Activities

After discussing related work based on the technology used,

we also want to place our work in context regarding the time

line of events.

Before meals can be prepared, a certain dish has to be chosen.

A shopping list has to be written (or kept in mind). Food has to

be bought and brought home. The food now has to be prepared

now, which is the point we specifically look at. After cooking,

the food will be consumed. All these steps are necessary in

this order. Much work in pervasive computing has specifically

addressed these other steps of the process chain which we will

present briefly.

The kitchen is a social place. Especially in the US, fridges

are not covered and integrated within a shelf, but usually

1http://www.media.mit.edu/ci/



Fig. 1. Kitchen activities time line (from left to right). In the course of
cooking and nurturing a family, many activities are involved. Research has
so far analyzed the process of joint planning, shopping and eating. Cooking
and food preparation activities have not recently been reported on. By our
contribution, we try to fill this gap.

do have an exposed, metallic surface which is used for

communication among house members. In Europe, usually a

pin board servers this purpose. Taylor et al. investigated the

use of fridge magnets [12] and identified planning of activities

(e.g. shopping) as key issues supported by this surface. From a

time perspective, Mankoff continues research on shopping lists

for rising nutritional awareness [3]. By analyzing shopping

lists and suggesting healthier and less calories alternatives,

they give support when it comes to deciding which food to buy.

After meals are cooked and prepared, the food is consumed.

Chang et al. [2] show how, in this step, healthier eating and

awareness regarding the amount and type of food during dinner

can be supported. Amft et al. [5] take a different approach

on identifying the type of food consumed, not regarding the

quantity. We try to fill the gap in this sequence of steps (see

Fig. 1) by enabling context-awareness and recognition in the

course of preparing food for cooking.

III. PLAYER/STAGE/GAZEBO FOR PERVASIVE COMPUTING

In this section, we introduce the technical details of the

Player/Stage/Gazebo (P/S/G) project, and present our contri-

butions with respect to pervasive computing. We continue with

a discussion of P/S/G’s properties as middleware for pervasive

computing. Finally, we present the simulation capabilities of

P/S/G as they have been used in the context of the AwareK-

itchen project.

A. The Player device repository

Fig. 2. Architectural overview. Data can originate either live from physical
hardware, previously stored logfiles or a simulator. The data is acquired
and provided by interfaces, abstracting from the physical device and its
proprietary data format. It can be either made available directly or additionally
be preprocessed on the Player server. The data is consumed by software clients
or a simulator.

The Player component provides a simple and flexible interface

for sensor and actuator control by realizing powerful classes

of interface abstractions for interacting with real or simulated

hardware. These abstractions enable the programmer to use

devices with similar functionality identically from the code

point of view, thus significantly increasing the robustness and

transferability of the code.

Player’s role in the sensor-actuator system is pretty similar to

the abstraction layers present in modern operating systems.

The same way an OS abstracts any hardware pointing device

via a mouse interface, Player’s abstraction layers decouple the

user’s program from the details of specific hardware. Any

client that uses a specific Player interface, such as the rfid
interface, will work in the same manner with any RFID readers

that are supported in the Player repository. Furthermore, any

number of clients can connect to the Player server and access

data, send commands or request configuration changes to an

existing device in the repository.

The most important working entity in Player is a device, which

itself is composed of a driver and an interface. The set of

interfaces are well defined and standardized, each of which de-

scribes the syntax and semantics for the allowable interactions

with a particular class of drivers. In the context of pervasive

computing, common interfaces include wsn and rfid, which

respectively provide access to a Wireless Sensor Network and

a RFID reader. Within the Player device concept, a driver does

the work of directly controlling the hardware unit, by mapping

its capabilities onto the corresponding interface. Within the

Player concept, a driver can be:

◦ code that connects and communicates to a physical de-

vice;

◦ an algorithm that receives data from another device,

processes it, then pushes it back through another channel

(e.g. sensor fusion and processing or cognitive algo-

rithms);

◦ virtual, meaning that it can create arbitrary data when

needed.

In addition to providing access to hardware devices, Player

drivers can implement sophisticated algorithms that use other

drivers as sources and sinks for data, can generate data from

the simulator or can play back previously recorded log files.

Therefore, the Player driver system can be thought of a graph

where nodes represent the drivers which interact with well-

defined interfaces (edges). The generated data is processed

through the appropriate interface provided by the device.

For example, data generated by a Particle sensor node will

be propagated through the wsn (Wireless Sensor Network)

interface, or data generated by a video camera through the

camera interface. A post-processing step can follow, in which

the data will be made available to another driver, or simply just

used as the input for another device (e.g. camera images can be

the input for a marker detection algorithm that later provides

position and orientation data through a fiducial interface). This

is similar to the WaveScope project [13]. Finally, numerous

data sinks are available, where the raw or processed data

from any number of Player devices or servers can be used

as input for other software programs, such as a higher-

level middlewares like ECT or the Context Toolkit, or a 3D

simulator like Gazebo.



B. Contributions for Pervasive Computing

Extending P/S/G towards pervasive sensing includes a

development effort to provide drivers for sensors such as

heterogeneous Wireless Sensor Networks, RFID technologies,

Inertial Measurement Units, etc, as well as the appropriate

logging tools, clients, visualizers and so on.

Initial work concentrated on defining and building the needed

interfaces for the pervasive computing sensors, since the

available pool of Player supported devices that were also used

in pervasive computing environments were mainly only related

to vision systems. Once the appropriate interfaces have been

defined, a series of Player drivers for new pervasive hardware

platforms were built and integrated in the freely available

P/S/G sources, including:

◦ Wireless Sensor Network nodes - with a wide variety of

different sensor nodes, ranging from the RCores and Par-

ticles from TecO/Particle Computers to the Porcupines,

or the Mica2 and Mica2Dots from Crossbow;

◦ RFID technologies - several readers such as the Inside

M/R300, the Skyetek M1 and the Skyetek M1-mini are

now supported;

◦ Inertial Measurement Units - supporting the XSens

MT9 as well as the XSens MTx, which provide drift-

free 3D orientation and kinematic data.

Besides drivers and interfaces, the logging system was ex-

tended so that recording and playback of data from exper-

iments is now possible. In addition, a number of virtual

drivers which take care of sensor calibration, data fusion and

automation feature extraction were also implemented.

The resulted devices can be accessed in the same way by the

client, without the need to write additional code. This enables

us to substitute drivers which provide the same interface, trans-

parently for the client, and provides an important advantage:

researchers can reuse the software without changes as long as

they use the same interfaces (e.g. same context information).

This greatly speeds up system and application development

and is an issue so far neglected by nearly all existing systems.

We integrated our drivers into the open source project to

support other researchers realizing their own projects with

P/S/G.

C. Simulation and Visualization with Player/Stage/Gazebo

Fig. 3. Virtual and physical kitchen: the real environment is modeled and
its physical properties are described so that sensors can acquire e.g. position,
orientation, material density or gravity.

P/S/G comprises a 2D and a 3D simulator, called Stage and

Gazebo. Both can be used for simulation and visualization.

We will present the potential of this features after a short dis-

cussion of related work on simulators in pervasive computing.

Simulation is important. Not all experiments can be done

in the real world. Either they are too expensive or costly,

too dangerous or are not easily repeatable. Therefore, re-

searchers often have to work with simulated data before

conducting the experiments to verify the results. An example

are simulators for mobile phones, more and more used in

pervasive computing for human-computer interaction. Most

applications are thoroughly tested on a PC simulator before

they are downloaded the first time to a real mobile phone.

The debugging capabilities and the comfort associated with

the simulator facilitate development a lot.

The question is why complex interactions, standard for perva-

sive computing, are normally not simulated and tested before

going to the real site? Probably the answer simply is that

there is no simulation system available that is comfortable

and powerful enough to accomplish this task.

1) 2D Simulator Stage: Surfaces and surface interaction

have attracted much research in the last years. Especially table

top UIs and smart surfaces allow many interesting interactions

between humans, devices and the environment.

Stage is the 2D simulator of the P/S/G project. It is especially

useful for e.g. path planning and obstacle avoidance in robots.

But it is easily imaginable that e.g. Pin & Play devices,

modeled in Stage, could be used for simulating this technology

and the interactions to develop application layer software. Also

for visualization only purposes of an existing Pin & Play

system, Stage can easily be used.

2) 3D Simulator Gazebo: The 3D simulator Gazebo of

P/S/G basically is a OpenGL view on an environment modeled

with the Open Dynamics Engine (ODE). ODE is useful for

simulating vehicles, objects in virtual reality environments and

virtual creatures. It is currently used in many computer games,

3D authoring tools and simulation tools.

We use the simulator (see Fig. III-C for a view on both the

physical and virtual kitchen) for visualization purposes - dis-

playing the sensor information in place and in a format easily

understandable by humans. We are currently exploring the

possibility of modeling not only common sensor platforms but

also the possibilities of modeling human-computer interaction

in the simulator. Already we are using the simulation environ-

ment as event generator, comparable but more powerful than

the Location Event Simulator [14], to test our algorithms in

early stages of the development process. A recently proposed

simulator for pervasive computing is UbiReal [15], though it

has only little middleware support.

IV. AWAREKITCHEN: AN EXAMPLE FOR AN INTELLIGENT

ENVIRONMENT RUNNING P/S/G

Understanding human activities and characterizing them

into expressive and detailed activity models is one of the key

issues of today’s current pervasive computing systems.

In this context, we are building and developing specialized

tools for acquiring user context in a kitchen scenario. We



also computationally augment everyday artefacts with sensing

technologies which are unobtrusively integrated.

By providing an as natural as possible environment, we enable

the humans in this environment to forget about the visible and

invisible technologies and act as normal as possible. This has

been a key principle during the project development.

A variety of sensors installed in the AwareKitchen provides

the system with the necessary data to study the activities that

take place in it. Several Hokuyo URG-04LX laser scanners

allow us to locate people in the kitchen and follow their

movements. Each cupboard door is equipped with a magnetic

sensor to determine if it is opened or closed. There are

also numerous RFID-Readers that detect the tags placed on

the objects of interest, like glasses, pots, and other cooking

equipment. One RFID reader is placed on a glove, which

allows us to detect which objects are taken or manipulated.

Additionally, a great number of wireless sensor nodes are

available, including Particles, RCores, Mica2s, Mica2Dots and

Gumstix. The wireless nodes have accelerometers, magnetic

sensors, light sensors, and microphones. Placed on objects or

people, they offer a very easy and flexible way to collect data

for new experiments.

Fig. 4. The AwareKitchen is an example for a sensor augmented intelligent
environment. Everyday objects are tagged with RFID markers and partially
equipped with wireless sensor nodes. Off-the-shelf and custom made compo-
nents turn objects into context providers. Magnetic sensors in all doors detect
opening and closing events. Mica2, Motes, Particles and Porcupine wireless
sensor nodes enable unobtrusive data acquisition. RFID readers in the kitchen
shelves detect the addition and removal of objects in various places, e.g.
cupboards, tables, etc. An intelligent cutting board and a sensor knife enable
context acquisition in the course of food processing and meal preparation.
Laser scanners provide the position and number of people working in the
kitchen. Robots learn from human behavior, e.g. from movement trajectories
captured by inertial sensors and help completing tasks as part of the assistive
health-care technology.

All systems presented deliver their data over the P/S/G

middleware and allow to access and log the data in a well-

defined, structured way. This supports and enables us to

develop more quickly application layer software. Some ex-

amples of applications for this pervasive computing system

we are currently working on are presented below. The P/S/G

middleware as discussed and presented above is a suitable

middleware for heterogeneous pervasive computing environ-

ments. We very shortly present examples of work-in-progress

currently conducted in the AwareKitchen environment.

A. Motion Analysis and Simulation

Fig. 5. Food preparing experiments in the AwareKitchen together with
the 3d reconstruction of the person’s motion from XSens IMUs (left) and a
visualization of the person’s position from the 3 laser sensors, during another
experiment in the AwareKitchen (right).

Using our XSens driver for P/S/G, we captured high-

frequency position and orientation data of several kitchen

activities like making a dinner table for a couple of persons

or cutting vegetables. Fig. 5 shows a screenshot of the 3D

visualization of cutting data (3D model of human) and the

image of Matthias Kranz with the XSens while cutting the

vegetables. Due to some limitations of the inertial sensors,

work is currently being done to obtain position and orientation

information from people using several cameras. Detecting how

many people currently are in the AwareKitchen, what their

position is relative to each other and to the kitchen, we are

using the data from laser scanners. Fig. 5 (right) shows a

visualization of the raw data.

B. Context-Aware Tools for Kitchen Environments

We built a sensor-augmented knife [8] that features (see

Fig. 6) a three axis of force and three axes of torque sensor

between handle and blade.

Fig. 6. Knife and Data visualization. The sensor between blade and handle
measures each 3 perpendicular axes of force and torque. The sensor is soldered
in the knife so it does not disturb normal use. The right image shows two
data sets (just one axis of torque) of the knife, cutting a carrot and a banana.
The data looks (as hoped) very different. Combing all 6 axes, we are able to
distinguish which food is currently prepared for cooking.

We determine the type of ingredient that is cut to pieces with

the knife in the course of preparing a meal. We are comparing

the results of the acceleration sensor with an analysis of audio

data from the cutting process. Both approaches can classify

at least 85% of the food correctly. Though, both approaches

differ significantly in the amount of features needed for this

classification results.



V. ACTIVITY RECOGNITION WITH NETWORKED SENSING

SYSTEM VIA P/S/G

A. Cutting Board and Camera

Fig. 7. The cutting board is suspended on four load cells (HBM 1-DF2SR-
3/5K-C) in the edges of the wooded board. The load cells are directed towards
the center of the board. In the middle of the cutting board, a ADXL203 two-
axes acceleration sensor is placed. Acceleration is sensed perpendicular to the
wooden board (z-axis). The cutting board can not only be used for implicit
context acquisition, but also for explicit interaction as a mouse.

The cutting board, depicted in Fig. 7, has been suspended

on four load cells which enable us to measure the total weight

and weight distribution of the ingredients being processed on

it.

With some domain knowledge applied we could e.g. also

determine the calories the ingredients contain if we knew what

type of food currently is processed. This would provide the

same information as used in the diet aware dining table [2]

without the introduction of a cumbersome scenario of a table

no-one is allowed to lean on. We will later show that we

can determine the type of food with a reasonable accuracy.

A common kitchen scale, already present in most kitchens,

can be replaced by this cutting board. It could even be used

as amouse for explicit interaction, as demonstrated with the

Load Table by Schmidt et al. [16].

We cut all ingredients for our experiments on this sensor

augmented cutting board and collected the data. We can

determine the type of processed food with the information

about the initial weight, the changes in weight distribution

(e.g. you move over the cutting board while cutting e.g. leek)

and the acceleration information.
As depicted in Fig. 8, a small camera is additionally

mounted above the cutting board. The camera only captures

the cutting board and a few centimeters around it. We believe

that a computer vision approach easily2 will be able to recog-

nize the food placed on the cutting board for meal preparation.

We therefore also captured the video data but did not put

any effort in object recognition. For limited niches as we do

have it here (recognizing food in a defined area with stable

lightning conditions), e.g. license plate recognition, has been

demonstrated many times by computer vision researchers.

2At least easy for researchers concentrating on computer vision.

Fig. 8. Setup of the cutting board. A sensitive microphone is placed above
the cutting board.

B. Microphone

The audio data is recorded with the microphone “AKG

C1000S”, which is placed approximately 30cm above the

cutting board. Also the web cam “Logitech QuickCam Pro

4000” is mounted above. Both data streams are recorded

to a single video file, so the audio- and video-signal are

synchronized.

C. Knife

To optimally detect which type of food is being prepared in

the kitchen, we need data that is produced very close to the

action, and with the least possible noise from other activities.

For this reason we chose to measure the forces and torques

that result from the interaction between the knife and the food.

We have equipped a knife (see Fig. 9) with a three axes

force/torque sensor (SI-40-2 from ATI Industrial Automation).

The sensor can measure torques up to 2 N-m and forces up to

120N, which is adequate for the normal tasks in the kitchen.

The data is recorded using a National Instruments PCI-6221

data acquisition card. The chosen sampling rate was 1kHz.

Fig. 9. Instrumented knife cutting carrots. A three axis force/torque sensor
has been soldered between handle and blade. The weight of the sensor is
minimal and nearly unnoticeable. The three axes are drawn as black lines in
the image above. The sensor does not hinder normal ”operation”.

D. Data Collection

We did three data collection sessions. During these sessions

four people cut different types of vegetables to small pieces.

We cut carrots, banana, different types of leek, kohlrabi,



ball pepper and apple. Carrots and kohlrabi have a hull that

normally will be removed before cutting. We also collected

audio data from peeling the hull of using a regular peeler. The

peeling can be used as a part of the audio classification, but

it is not present in the knife data.

E. Audio Data Analysis

Fig. 10. Overview of the audio based classification of the cutting task.

For the audio database 15 video samples are separated into

cutting-episodes, which represent one cutting or peeling action

of a fruit or a vegetable. The total number of cutting-episodes

is 269 and the distribution of the cutting-episodes is nearly

uniform. The database contains 40 examples of apple cut, 43

of carrot peel, 42 of carrot cut, 31 of kohlrabi peel, 34 of

kohlrabi cut, 48 of leek cut and 31 of bell pepper cut. To

obtain good results for the classification it is important that

the number of instances of each class is nearly equal.

To deal with the complex audio data, the signal is first pre-

processed by applying a Hamming-window, and separating the

signal into frames of 20ms each, windowed every 10ms. In this

way, we obtain 100 frames per second.

It is very hard for any machine learning algorithm to process

audio data directly. To deal with this issue, certain features are

extracted from the waveforms of each frame. Around seven

thousand different features in total are used, and they include

for each frame: feature countours containing information about

pitch, energy, amplitude, bandwitdh. Harmonics-to-Noise Ra-

tio and many others.

The basic feature contours are provided by the package

Speech-Filing-System (SFS) [17]. SFS is a free package

combining several speech signal processing libraries within

one framework.

The next stage performs a feature selection to reduce the

dimensionality. This is needed because of the huge feature

space and to save calculation and classification effort.

All the following results are performed on the audio

database with 269 instances. The WEKA 3 data-mining

environment [18] is used for classification. Only few of

the available classifiers perform an analysis of this huge

feature space in an acceptable time. The best result of the

evaluation of the full feature space (around 7000 features)

is obtained by a Support Vector Machine (SVM) with a

polynomial kernel, complexity and exponent are set to one.

This classifier achieves a performance of 85.5% of correct

classified instances and the table I shows the confusion

matrix.

After applying a feature selection algorithm, the training

algorithm only has to deal with around 250 features, and has

a very similar percentage of correctly classified instances. The

learning phase is much faster with the reduced number of

features.

classified as -> apple carrot carrot kohl. kohl. leek pepper
cut cut peel cut peel cut cut

apple cut 31 0 0 3 5 0 1
carrot cut 0 41 0 0 0 0 1
carrot peel 1 0 42 0 0 0 0
kohlrabi cut 4 1 0 24 0 2 3
kohlrabi peel 3 1 0 2 23 1 1
leek cut 1 0 0 0 0 46 1
pepper cut 4 3 0 1 0 0 23

TABLE I

CONFUSION MATRIX OF THE BEST CLASSIFICATION METHOD ON THE

AUDIO DATA. THE MAJORITY OF AUDIO SECTIONS ARE CLASSIFIED

CORRECTLY.

Some confusion between apple cut, kohlrabi cut and

kohlrabi peel occurs, because these fruits and vegetables have

a similar consistency [7]. The second reason is that at the

end of each cutting episode, the sound of the knife touching

the cutting board can be heard, and this sound is the same

always.

F. Force/Torque Data Analysis

During the cutting action, the forces and torques produced

have a signature that can be used to identify the type of food

that was handled. To find this non-trivial signature, we will

also use machine learning techniques.

We do the classification using only the torque data from one of

the axes, with the intention of seeing the feasibility of cheap

production of such instrumented knifes.

We first segment the cutting data automatically into episodes

using thresholding with a minimum value for the cutting

actions. The episodes also have to meet a minimum-length

requirement of 100 ms. Each episode represents a cut into the

fruit or vegetable.

Since the data is much cleaner than the audio recordings, a

simpler set of features is enough for the classification. We

used the following features to describe each episode: mean,

variation, length, integral, maximum value, minimum value,

Skewness, Kurtosis, and the first 50 coefficients of the Fourier

Transform.

We collected a total of 854 episodes, including cutting of

apples, carrots, kohlrabi, bananas, leek, and bell peppers.

To classify the data, we use WEKA [18], with the Multi-

BoostAB classificator, using J48 decision trees internally. The

resulting model is small, and can run in real time to give

results as the people are using the knife. The results of the

classification are shown in Tab. II.

From table II we can observe that the classificator has

excellent performance for all the tested ingredients, with the

exception of bell pepper.

The cutting episodes from the bell pepper are very hard to

classify because the pepper presents a different resistance and

structure during cutting: at the beginning it is very stiff and

hollow, and the classifier confuses it with kohlrabi. Later when

the pepper is open, and the cook cuts it into slices, the cutting

action is very short and sharp, and its data looks like the

cutting of carrots. The classificator is still able to correctly



classified as -> apple carrot kohlrabi banana leek pepper
apple 27 0 0 5 0 2
carrot 0 102 3 4 5 9
kohlrabi 3 0 183 0 1 9
banana 0 0 0 167 0 0
leek 0 2 0 2 179 4
pepper 2 17 29 1 9 89

TABLE II

CONFUSION MATRIX OF THE BEST CLASSIFICATION RESULT USING THE

KNIFE DATA.

detect the bell pepper in the majority of the cases.

Using only the information from one axis of the force/torque

sensor, we have obtained an accuracy of the classification

higher than 85%. This information can be obtained by an in-

expensive strain gage installed in regular knifes. The sampling

frequency of 1kHz can also be easily reached by inexpensive

micro controllers, which could collect the data and transfer

wirelessly for recording. Since the cost would be very low, it

is thinkable that such an instrumented knife will be present in

kitchens in the future.

An accuracy of 85% might seem low, but this is only the

accuracy of each cut. As a part of our future work, we plan to

use the assumption that a person usually does several cuts in a

row to the same ingredient, and that there are pauses between

manipulation of different ingredients, to automatically segment

the cutting episodes. Then we can use the classifications of

all the cuts in one cutting segment to make a much better

classification. We expect to achieve an accuracy higher than

95%.

VI. CONCLUSIONS

We present a common scenario, a kitchen, as fertile setting

for investigating context-awareness in smart homes. We report

on the rich sensor systems involved in this scenario and

report on how a networked sensing system meaningful can be

employed to gather information. We introduce a novel sensing

middleware to the pervasive computing community and we

report on our extensions to this middleware to leverage existing

technologies and also share our drivers as part of the open

source software Player/Stage/Gazebo to allow researchers to

use them in their own projects. We discuss two examples of

augmented tools in the kitchen environment in detail and report

our findings. We also hope to attract researchers to explore the

potentials of P/S/G in their work as step towards a ’standard’

middleware for pervasive computing in e.g. intelligent envi-

ronments.
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