
Gesture Classification with Hierarchically
Structured Recurrent Self-Organizing Maps

Volker Baier
Neuro Cognitive Psychology,

Universität München
Leoplodstr. 13, 80802 Munich, Germany

baierv@cs.tum.edu

Lorenz Mösenlechner
Institut für Informatik,

Technische Universität München
Boltzmannstrasse 3, 85748 Garching b. München, Germany

moesenle@cs.tum.edu

Matthias Kranz
Institut für Betriebssysteme und Rechnerverbund,

TU Braunschweig
Mühlenpfordtstr. 23, 38106 Braunschweig, Germany

matthias@ibr.cs.tu-bs.de

Abstract—New input devices need clever algorithms to process
input information. We constructed a hierarchically structured
neural network assembly based on recurrent self-organizing maps
which is able to process and to classify motion data. We derived
motion data using a so called Gesture Cube [1], a cubic tangible
user interface developed for one-handed control of media appli-
ances in a home environment. This previously recorded data was
automatically pre-processed by our biologically inspired neural
network and classified by a improved k-nearest neighborhood
classifier. In this paper we shortly describe the platform used
for data acquisition but focus on the novel algorithms used for
classification.

Index Terms—Gesture Cube, Sequence Processing, Sequence
Classification, Multi Layer Neural Networks

I. INTRODUCTION

Dealing with continuous streamed motion data is a quite dif-
ficult task for neural networks. We will introduce an assembly
which is able to sub-sample the stream on a temporal basis
in a self driven manner. The sub-sampling network structures
act as temporal filter combining activation events of single
neurons to static activation patterns. These patterns represent
the input of the classification algorithm.

II. RELATED WORK

Cubic user interfaces have attracted many researchers in the
field of pervasive computing. The compelling properties and
implications of cubes have been discussed by Sheridan [2] and
Terrengi and Kranz [3]. The system used for data acquisition
has been developed by Freund et al. [1]. The Gesture Cube
is based on the same wireless sensor node platform, as
the Display Cube of Kranz et al. [4], [3], employing the
Particle Computer Platform [5], [6], a common sensor network
platform. The displays have been removed and the housing
was changed to a more compelling form factor. This allows
the usage of a well designed user interface as input to other
systems which can be manipulated with only one hand due to
its size. We therefore will not discuss the platform in greater

detail but will focus on the algorithm and the classification of
the previously recorded sensor data.

Early systems discussed the cube as tangible user interface
for input (e.g. Block et al. [7]) and combined I/O (e.g
Laerhoven et al. [8]).

The importance of good classification of acceleration sensor
data for context derivation has been shown, for example, by
Laerhoven et al. [9], [10]. Another example of a cubic user
interface is Laerhoven’s [11] Fair Dice. It is an example of
sensory augmentation of an object that perceives rolls and
records what face it lands on. Neural networks are used for
classification here.

To distinguish our work from other classification systems
using acceleration sensor data, our data intentionally was not
tuned: The sensor data we acquired has been sampled at a
much lower frequency and with high noise on the sensor
data - absolutely no preprocessing has been done on the local
sensor node, nor has the measurement range of the ADXL
acceleration sensor been adjusted to actual measurement range.
This makes classification and sense-making of sensor data, e.g.
for context-aware applications, much more challenging. Thus,
this setup is much more real-world like and the algorithm
presented in this work therefore can be applied to a greater
range of scenarios.

III. GESTURE CUBE

The data sets we used for classification were gathered
with the above introduced Gesture Cube, containing three
orthogonal acceleration axis (two perpendicular mounted two-
axes acceleration sensors from Analog device). Fig. 1 shows
the cube and the embedded sensor node.

The sensor readings are transfered via a wireless RF com-
munication channel in near-real time to a PC via a so-called
XBridge (RF-to-UDP bridge). The limitations of the embedded
PIC microprocessor is unsuitable for preprocessing, therefore
this process cannot be dealt with on the sensor node platform.
Also, the timing of the communication slots [6] interrupts

the micro-controller during the data transmission process.
Thus, some sensor readings may be lost already during data
sampling and acquisition. In our work, we explicitly exploit the
shortcoming in processing power and transmission bandwidth
and feed our neural network with this noisy and erroneous
sensor data.

The sensor data we use as input for the classification system
was captured from a user who performed gestures with the
wooden cube in his hand. By performing gestures, the user
controlled a media player [1].

Figure 1. The Gesture Cube is a small wooden cube just big enough
to contain a wireless sensor system. The system is networked with the
environment with a unreliable RF communication channel. The data is noisy
and sampled at a very low rate. Additionally, data can get lost on the RF
channel - no securing against data loss has been implemented or used.

For training purpose we combined all gestures in a single
data file plotted in Fig. 2.

IV. NEURAL NETWORK

A. Single Processing Layers

To understand the network behavior it is necessary to
provide a brief introduction to the well established model of
Kohonens Self-Organizing Maps (SOM).

SOMs can be defined as a two dimensional mesh-grid of
neurons. Each neuron holds a weight vector wi and its position
on the mesh ri.

Training is done in an unsupervised scheme. Initially, all
weight vectors are randomly occupied. After providing the
network with an input value, we calculate the distance between
input value x(n) and weight vector of each neuron yi. The best
matching neuron (often called best matching unit BMU) is the
one with the smallest euclidian distance to the input vector and
denominated with yb.

yi(n) = ||x(n)− wi(n)||p (1)
yb(n) = min ||yi(n)|| (2)

The BMU is then adapted with its neighboring neurons
towards the input value. The neighborhood is determined by
a neighborhood function:

Nib(n) = exp
(
−||ri − rb(n)||22

2σ(n)2

)
(3)

wi(n + 1) = wi(n)γ(n)Nib(n)((x(n)− wi(n)) (4)

The width of the neighborhood is a decreasing function of
time as well as the learning rate γ(n).

To enable this algorithm to process temporal sequence
information like the Gesture Cube motion data, we extended
the standard formulation of the neuron with respect to a
temporal recurrent activation handling. An existing formula-
tion, namely RSOM [12], used a feedback of the activation
back to the input. Since we want that the temporal ordering
of activation events is preserved along the whole processing
chain, we introduce a nonlinear mapping of the excitation of
the BMU to a standardized activation value of 1 and therefore
called the algorithm Strict Temporally Ordered Recurrent Map
(STORM). If we take the activation strength as the time
reference, the euclidian distance calculation in the RSOM
formulation is responsible for the problems in the temporal
ordering. Additionally we introduced a quite biological limi-
tation, namely a period within a once activated neuron is not
able to be activated. This limitation is the so called refractory
period.

Excitationx(t) +

-w(t) t-1

+ y(t)
α

1 − α

BMU
Selector

1

t-1

Activation

1 − α

Figure 3. STORM Neuron with separated excitation and activation

The excitation of a recurrent neuron is a combination of the
damped output of the last time step, with the current output:

yi(t) = (1− α)yi(t− 1) + α(x(t)− wi(t)) (5)

Based on the excitation we calculate the activation of the
neuron with:

zb(t) = 1.0 (6)
zi 6=b(t) = zi 6=b(t− 1)(1− α)

! "!! #!! $!! %!! &!!! &"!! &#!! &$!! &%!!
!%

!$

!#

!"

!

"

#

$

%

'

(
)
*
+
,

-)./01+234+5'6,+5

Figure 2. Combined Gestures Plot

By applying an unified activation value to the first non
refractory neuron, we establish a nonlinear projection from the
input to the output of the neuron. Calculating the activation
in this way ensures a strict temporally ordering of the firing
state of the neurons. The result of this scheme is an activation
pattern of all neurons whereas the level of activation also codes
it temporal occurrence in the past.

The period, during which a neuron is stated refractory is
determined with the system response and the significance
threshold θs.

kθ = mink|θs ≥ α(1− α)k (7)

We also tried to add some extra time steps to the refractory
period. These extra time steps resulted in a better unfolding
of the network and a better representation of the input data on
the network. The trials described below where gathered with
two thirds extra time steps:

kΘ = kθ + kθ · 2/3 (8)

This variant of STORM is called inhibited STORM (iSTORM)
and is used as one type of the used structures in the neural
network assembly.

B. The Neural Network Assembly

Based on the single processing layers introduced above
we constructed a multi-layer network. This compound is a
derivation of the spatio temporal Strict Temporally Ordered
Map (stSTORM) [13] lacking the prediction instances.

The assembly consisted of three iSTORM layers consisting
of 20 × 20 neurons filtering the input information to get a
temporally more coarse representation of the input data stream.
Each layer collects several activation events before it feeds its

activation state, a single vector consisting of the activation
values of all neurons, to the next higher processing layer. This
scheme applies for the three first processing layer.

The fourth layer is a classical SOM layer (10×10 neurons)
building a static time space representation of the last seen
activation. The fifth layer sums up the last seen activation
events of the fourth layer establishing an activation density
mapping.

Finally, we fed the information of the fifth layer into a k-
nearest neighborhood classification algorithm.

C. The k-Nearest Neighborhood Classificatory

For classification we used the k-nearest neighborhood al-
gorithm. For each (unknown) data vector to be classified, the
distances to all learned data vectors are calculated. The class of
the input data vector is then determined by a majority decision
of the k closest vector’s classes.

In contrast to the original formulation of the k-nearest
neighborhood algorithm, we used a distance measurement
derived from the Kullback-Leibler-Divergence (9).

D(v(1), v(2)) =
∑

i

v
(1)
i log

v
(1)
i + 1

v
(2)
i + 1

(9)

This distance measurement resulted in a classification result
gain of 5 percent compared to the euclidian distance.

V. RESULTS

We tested our neural network assembly on a data set
consisting of the acceleration values of ten gestures executed
with the Gesture Cube. For each gesture we had only ten
samples, consisting of about 200 samples. The ten samples

for each gesture varied in frequency and magnitude, which
forced the network to generalize in order to achieve good
classification results.

The data was preprocessed by shifting and scaling the values
to a range between around [−1, 1]. This was simply done to
have better control of the random initialization of the weight
vectors. The initialization was chosen to be normal distributed
with mean 0 and a variance of 1.

We used a feedback factor α = 0.3 leading to memory of
8 time steps and a refractory period of 11 time steps in total.

The activation pattern of layer 1 was passed to layer 2 after
five time steps (∆t1 = 5). The subsequent layers collected
information for 3 time steps each (∆t2 = 3).

Our results were gathered with a 5 fold cross-validation us-
ing a 5-nearest neighborhood classificator as described above.
The performance of our classification algorithm is illustrated
in the confusion matrix in table I. The overall classification
rate was 80%.

Table I
CONFUSION MATRIX WITH 5-NEAREST-NEIGHBORHOOD AND

5-FOLD-CROSSVALIDATION

1 2 3 4 5 6 7 8 9 10
1 9 0 0 0 0 1 0 0 0 0
2 0 9 1 0 0 0 0 0 0 0
3 0 0 10 0 0 0 0 0 0 0
4 0 0 3 7 0 0 0 0 0 0
5 0 0 0 0 10 0 0 0 0 0
6 1 0 2 0 0 5 0 0 2 0
7 0 0 2 1 3 0 4 0 0 0
8 0 0 0 0 0 0 0 9 0 1
9 0 0 0 0 0 0 0 0 10 0

10 0 2 0 0 1 0 0 0 0 7

The mapping of the class numbers and gestures is shown in
table II. We cross checked several classification algorithms

Table II
MAPPING OF GESTURES TO CLASS NUMBERS.

Class Gesture name
1 Shake up down
2 Shake right left
3 Shift backward
4 Shift up
5 Spin forward
6 Spin horizontal
7 Throw catch
8 Turn forward
9 Turn right

10 Wiggling forward backward

like support vector machines and RBF networks for the
classification instance in our assembly. Even the support vector
machine had a slightly worse classification result (76%) than
the k-nn classificator with KL divergence. The RBF network
achieved 73%.

VI. CONCLUSIONS AND DISCUSSION

With our work we showed that an algorithm developed to
explain biological phenomena within the visual processing
apparatus of the human brain can be successfully used for

technical pattern processing and classification. Furthermore
our approach is highly successful even on small data sets and
noisy information without special adaptation for the specific
task. The number of training cycles was surprisingly small.
Our algorithm showed the excellent classification results after
only 90 training cycles.
In future work we will continue to integrate results from
fundamental research in neuro cognitive modeling into neural
network assemblies addressing real world applications.

VII. ACKNOWLEDGEMENTS

Part of the work was funded by the CoTeSys Cluster of
Excellence.

REFERENCES

[1] M. Kranz, S. Freund, P. Holleis, A. Schmidt, and H. Arndt, “Developing
gestural input,” icdcsw, vol. 0, p. 63, 2006.

[2] J. Sheridan, B. Short, K. V. Laerhoven, N. Villar, and G. Kortuem, “Ex-
ploring cube affordance: Towards a classification of non-verbal dynamics
of physical interfaces for wearable computing,” in In Proceedings of the
IEE Eurowearable 2003. IEE Press, 2003, pp. pp 113–118.

[3] L. Terrenghi, M. Kranz, P. Holleis, and A. Schmidt, “A cube to learn:
a tangible user interface for the design of a learning appliance,” in
Personal and Ubiquitous Computing, November 2005, pp. pp. 1–6.
[Online]. Available: http://dx.doi.org/10.1007/s00779-005-0025-8

[4] M. Kranz, D. Schmidt, P. Holleis, and A. Schmidt, “A display cube
as tangible user interface,” in In Adjunct Proceedings of the Seventh
Internation Conference on Ubiquitous Computing (Demo 22), September
2005.

[5] C. Decker, A. Krohn, M. Beigl, and T. Zimmer, “The particle com-
puter system,” in IPSN Track on Sensor Platform, Tools and Design
Methods for Networked Embedded Systems (SPOTS), Proceedings of the
ACM/IEEE Fourth International Conference on Information Processing
in Sensor Networks, April 2005.

[6] M. Beigl, A. Krohn, T. Zimmer, C. Decker, and P. Robinson, “AwareCon:
Situation Aware Context Communication,” in Proceedings of Ubicomp
2003, Seattle, USA, October 2003.

[7] F. Block, A. Schmidt, N. Villar, and H.-W. Gellersen, “Towards a playful
user interface for home entertainment systems,” in European Symposium
on Ambient Intelligence (EUSAI 2004), Springer LNCS 3295. Springer,
2004, pp. pp207–217.

[8] K. V. Laerhoven, N. Villar, A. Schmidt, G. Kortuem, and H. Gellersen,
“Using an autonomous cube for basic navigation and input,” in ICMI
’03: Proceedings of the 5th international conference on Multimodal
interfaces. New York, NY, USA: ACM Press, 2003, pp. 203–210.

[9] K. V. Laerhoven and H.-W. Gellersen, “Spine versus porcupine: A study
in distributed wearable activity recognition,” in ISWC ’04: Proceed-
ings of the Eighth International Symposium on Wearable Computers
(ISWC’04). Washington, DC, USA: IEEE Computer Society, 2004, pp.
142–149.

[10] K. V. Laerhoven, K. A. Aidoo, and S. Lowette, “Real-time analysis
of data from many sensors with neural networks,” in ISWC ’01:
Proceedings of the 5th IEEE International Symposium on Wearable
Computers. Washington, DC, USA: IEEE Computer Society, 2001,
p. 115.

[11] K. V. Laerhoven and H.-W. Gellersen, “Fair dice: A tilt and motion-
aware cube with a conscience.” in ICDCS Workshops. IEEE Computer
Society, 2006, p. 66.

[12] T. Koskela, M. Varsta, J. Heikkonen, and K. Kaski, “Temporal sequence
processing using recurrent som,” in KES’98 2nd Int. Conf on Knowledge-
Based Intelligent Engineering Systems, Adelaide, Australia, vol. 1, April
1998, pp. 290–297.

[13] V. Baier, “Motion perception and prediction: A subsymbolic approach,”
Electronic, Chair for Theoretical Computer Science and Foundations of
Artificial Intelligence, TU München, November 2006.

http://dx.doi.org/10.1007/s00779-005-0025-8

	I Introduction
	II Related Work
	III Gesture Cube
	IV Neural Network
	IV-A Single Processing Layers
	IV-B The Neural Network Assembly
	IV-C The k-Nearest Neighborhood Classificatory

	V Results
	VI Conclusions and Discussion
	VII Acknowledgements
	References

