
A Player/Stage System for Context-Aware Intelligent
Environments

Matthias Kranz1 Radu Bogdan Rusu2 Alexis Maldonado2

Michael Beetz2 Albrecht Schmidt1
1{matthias,albrecht}@hcilab.org 2{rusu, maldonad,beetz}@cs.tum.edu

1Research Group Embedded Interaction, University of Munich
Amalienstrasse 17, 80333 Munich, Germany

2Technische Universität München (TUM)
Boltzmannstrasse 3, 85748 Garching b. München, Germany

Abstract. The effective development and deployment of complex and hetero-
geneous ubiquitous computing applications is hindered by the lack of a compre-
hensive middleware infrastructure: interfaces to sensors are company specific and
sometimes even product specific. Typically, these interfaces also do not sustain
the development of robust systems that make use of sensor data fusion.
In this paper, we propose the use of Player/Stage, a middleware commonly used
as a de facto standard by the robotics community, as the backbone of a heteroge-
neous ubiquitous system. Player/Stage offers many features needed in ubicomp,
mostly because dealing with uncertainty and many different sensor and actuator
systems has been a long term problem in robotics as well.
We emphasize they key features of the Player/Stage project, and show how ubi-
comp devices can be integrated into the system, as well as how existing devices
can be used. Additionally, we present our sensor-enabled AwareKitchen environ-
ment which makes use of automatic data analysis algorithms integrated as drivers
in the Player/Stage platform, of which we are active developers.

1 Introduction
Intelligent sensor-equipped environments can be much more helpful if they are capable
of recognizing the actions and activities of their users, and inferring their intentions.
Understanding human activities and characterizing them into expressive and detailed
activity models is one of the key issues of today’s current pervasive computing systems.

Integrated ubiquitous computing environments are still rare to find. By integrated
we mean that the ubiquitous technology is seamlessly interwoven within a real-world
setting and not put into an artificial laboratory or a single dedicated ubiquitous com-
puting room. Examples of highly integrated sensor-enriched environments are e.g. the
Georgia Tech Aware Home [1] or MIT’s PlaceLab [2].

Those research facilities enable researchers to develop, build and test context-aware
applications in a real-world setting. Building and maintaining these environments is
expensive, in terms of time and money, and thus, not many researchers are able to work
in them. While an invaluable source for researchers, systems and software are often
not publicly available, e.g. Mites as novel sensor platform currently cannot be used
by other researchers to reproduce research results. Annotated sensor histories are one
solution to share data and context information and allow for algorithms and applications
development without the need for the original infrastructure. Again, those annotated
histories are costly to produce and much effort for labelling is required.



To deal with the above stated problems, we propose the usage of a proven and
tested open-source middleware for sensor and actuator systems. This middleware,
Player/Stage [3], is a de facto standard in the robotics research community. After a
short introduction of Player/Stage which is so far not known to have been used in
a ubiquitous computing context, we show its potentials and use it in our research
scenario, the AwareKitchen. We developed interfaces that enable several ubicomp
sensor platforms to be connected to Player/Stage, as well as software subsystems that
can process raw data and extract relevant features automatically. Work concerning
feature selection and semi-automatic gesture classification is in progress and will be
made available free of charge as part of the Player/Stage open source software package.
After placing our work in context to related work, we conclude by giving an outlook
on our work and the potentials of Player/Stage as suitable middleware for ubiquitous
computing.

2 Proposed System Overview
We propose the use of Player/Stage, a widely used middleware in the robotics commu-
nity, as the backbone of a heterogeneous ubiquitous system.

We begin by explaining how the Player/Stage system works, then illustrate how
ubicomp devices can be integrated into the system. Next we talk about the possibility
of using processing algorithms integrated as Player drivers, and then finally about the
existing high-fidelity simulation capabilities of the system.

2.1 Player/Stage – A middleware for robotics
The work on the Player/Stage project started at the University of Southern California in
the late ninetees and moved to Sourceforge in 2001. Since then, the userbase has grown
considerably in size, and currently the pool of project developers consists of people
working at universities and research institutions all around the world. Because of its
highly active development, the Player/Stage project became a de facto standard in the
open source robotics community [3].

The project has two major components:
– Player, a distributed device repository server for robots, sensors and actuators, di-

vided into several libraries for enhanced flexibility;
– Stage, andGazebo, a 2-D respectively 3-D simulator, which provide the user with

tools that support research into multi-agent autonomous systems as well as high
fidelity robot simulations.
A device, as defined by Player, is composed of a driver and an interface. Every inter-

face is well-defined, therefore all a driver needs to do is pack the data in the appropriate
interface format and provide it to the client. Within the Player concept, a driver can be:

– code that connects and communicates to a physical device;
– an algorithm that receives data from another device, processes it, then pushes it

back through the same channel;
– a "virtual driver", which can create arbitrary data when needed.

Due to the standardized interfaces, and because of the fact that Player/Stage was
designed to be language and platform (POSIX) independent, various client-side utilities
exist for a large variety of programming languages: C, C++, Java, Python, LISP, Ada,
Octave, Ruby, Scheme, etc. to name some. Any number of clients can connect to the
Player server and access data, send commands or request configuration changes to an
existing device in the repository.

Some of the key features of the project are: platform, programming languange, and
transport protocol independence; enhanced scalability; open source; usage of standard-
ized communication protocols and high modularity.

2



2.2 Player interfaces and drivers for UbiComp Platforms
To better illustrate the advantages of using Player/Stage as a middleware platform in
ubiquitous computing, we will show that:

– binding of common ubicomp platforms to Player/Stage is easy and feasible;
– an ubicomp context can already make use of the existing support for several devices

(cameras, ultrasonic sensors, lasers, etc) and reuse the code/algorithms already im-
plemented in Player/Stage, due to the existing standardized, uniform interfaces.
Our work concentrated on adding support for various ubiquitous devices for

Player/Stage as well as building software algorithms that could be used in feature
extraction and machine learning applications.

We have already added support for a wide variety of devices, such as:
– Wireless Sensor Nodes- RCores and Particles from Particle Computers, Mica2

and Mica2dot from Xbow;
– RFID readers - Skyetek M1/M1-mini, Inside M300.

Figure 1. Player/Stage overview for UbiComp Platforms
We defined several standard interfaces (wsn, rfid, features) so that different devices

can be accessed in the same way by the client, without the need to write additional
code. This enables us also to substitute devices with the same interface e.g. when they
provide location information. This is an important advantage: researchers can reuse the
software without changes with their devices as long as the just use the same interface
proving the same context information. This will greatly speed up system and applica-
tion development and is an issue so far neglected by nearly all existing systems. This
is a very powerful concept in Player/Stage, which we think will attract the ubicomp
community.

As an example, one can scatter a number of different wireless sensor nodes (mica2
and particles for instance), yet use the same code to access the data or to configure the
nodes.

2.3 Advanced processing/learning algorithms as Player drivers
In our work, feature extraction is one of the most important issues that we need to
address.

3



Because we deal with so many different types of sensors and application scenarios,
a manual annotation and feature extraction process would be very cumbersome.

Therefore, we took advantage of the flexibility of the Player/Stage system, and came
up with an automatic feature extraction system, that can take raw data from sensors, and
output various features or coefficients calculated through a variety of methods, such
as: Principal Component Analysis (PCA), Independent Component Analysis (ICA),
Wavelet analysis, Fourier analysis, etc.

The features driver acts as a virtual gateway between the raw data received from the
sensors and various different more useful interpretations of it. Based on input configu-
ration options given by the user (full configuration of parameters for each algorithm is
possible, without writting a single line of code), the driver spawns as many threads as
needed to perform real-time feature extraction and calculus.

An example of a Player configuration file for an automatic acceleration feature ex-
tractor driver is given below:

driver (
name "accelfeatures"
plugin "libaccelfeaturesdriver"
provides ["features:0" "wsn:1"]
requires ["wsn:0"]
window_size 16
queue_size 10000
overlapping 50
feature_list ["wavelet_coeff" "ica"]
wavelet_params ["daubechies" 20]

)
...↓ ...



...↓ ...
driver (

name "accelfeatures"
plugin "libaccelfeaturesdriver"
provides ["features:1" "wsn:2"]
requires ["wsn:1"]
window_size 16
queue_size 10000
overlapping 50
feature_list ["energy" "rms" 11

"skewness" "magnitude" 15 18]
)

In this case, the accelfea-
tures driver will spawn two
different threads, using the
output of the first as the input
of the second.

Therefore, the first thread will receive acceleration data via thewsn:0interface, cal-
culate wavelet coefficients using Daubechies 20 and perform Independent Component
Analysis (ICA) in parallel, and finally pack the resulted values in thewsn:1 interface.
The second thread will receive the values via thewsn:1 interface, and then calculate
more standard features such as: energy, rms, mean_deviance (11), skewnewss, magni-
tude, cross correlation (15) and kurtosis. As can be seen from the example, the feature
list can be given as both indexes or string names. For a better understanding of how the
features extraction mechanism works, refer to Figure 2.

By providing data through the above mentioned interfaces, the client software can
easily access any information from the system, at any given point. Several instances of
the same driver can be linked together, so that standard features such as mean, variance,
et al., can be calculated from raw data or Fourier coefficients or even the inverted/filtered
wavelet transformation of the function, using exactly the same code. The number of
features that can be calculated is easily extendable.

Figure 2. Features Extraction System and its usefulness in learning SVM models

Besides the automatic feature extractions system, we are currently developing an
automatic feature selection driver using boosting as well as a semi-automatic learn-
ing and classification system using Support Vector Machines (SVM).Preliminary work
already shows that we can easily switch between training and testing sessions, using
additional sensor data (eg. while the user is holding an RFID-tagged object, record ac-
celeration and angular data and use it to learn a motion blueprint using SVM). As soon

4



as the above mentioned drivers are ready, we will make them available through the
Player/Stage open source project.

3 AwareKitchen
As part of our vision of a supportive and active ubiquitous computing environment, we
started to build a sensor-enriched kitchen.

A variety of sensors installed in the AwareKitchen provide the system with the nec-
essary data to study the activities that take place in it. Several Hokuyo URG-04LX
laser scanners allow us to locate people in the kitchen and follow their movements.
Each cupboard door is equipped with a magnetic sensor to determine if it is opened
or closed. There are also numerous RFID-Readers that detect the tags placed on the
objects of interest, like glasses, pots, and other cooking equipment. One RFID reader
is placed on a glove, which allows us to detect which objects are taken or manipulated
(see Figure 2).Additionally, a great number of wireless sensor nodes are available, in-
cluding Particles, RCores, Mica2s, Mica2Dots and Gumstix. The wireless nodes have
accelerometers, magnetic sensors, light sensors, and microphones. Placed on objects or
people, they offer a very easy and flexible way to collect data for new experiments.

Figure 3. AwareKitchen in the Gazebo simulator (left) and real life (right)

Using Gazebo [4], the whole AwareKitchen environment can be simulated, and thus,
develop and test algorithms without using the real hardware. The simulator also pro-
vides an easy way to visualize the captured data through the use of the replay virtual
Player drivers.

4 Related Work
Phidgets [5] abstract and package input and output devices, hiding construction and
implementation details and expose a well-defined API. This is similiar to the interfaces
used in Player/Stage, and it’s especially needed for fast application development and
device substitution. Papier-Mâché [6] enables programmers to develop user interfaces
by shielding low-level details. It provides technology-independent input abstractions,
e.g. prototyping an UI with computer vision and deploying it with RFID. It also simu-
lates hardware by offering Wizard-of-Oz like generation of input events. The simulation
of sensor or context events in a ubiquitous computing system enables the developers to
concurrently develop low- and high-level parts of the system and thereby reduce the
overall development time. The virtual drivers provided by Player/Stage fulfill exactly
this function.

Intille et al. [7] showed the importance of having a real scenario (PlaceLab [2]) for
research. This environment may be open to be used by selected researchers, but will not

5



be used by a greater community. Also, the Mites hardware that was used is currently not
available to researchers to enable them to reproduce the results. Therefore, Intille et al.
provide annotated log files of relevant sensor events. The Player/Stage platform makes
it easy to log all data via a Player interface component. The sharing of huge amounts
of sensor and context information among researchers becomes easy and practical. The
data can be played back into the system via a virtual driver. This enables researchers
to test and develop their algorithms without the need of a real environment - all that is
needed is the open source Player/Stage platform.

5 Conclusion and Future Work
We presented Player/Stage, an open source middleware for sensor/actuator systems and
demonstrated how ubicomp devices and algorithms can be integrated into it. In our opin-
ion, the overall system is more suitable in comparison to other existing middlewares,
and we strongly encourage the ubicomp community to use it.

We are currently developing additional interfaces and drivers to include more wire-
less sensor platforms, as well as semi-/automatic data processing tools, such as feature
selection or learning models from acceleration data. As soon as they are ready, they
will be integrated into the Player/Stage project and thus, made available to anyone in-
terested.

The acquired sensor data from our experiments in the AwareKitchen, is also made
available to interested researchers, and using a virtual driver component that we devel-
oped, can be replayed within the Player/Stage system. By making use of the logged data
and simulation components, certain scenarios can be reconstructed in other laboratories,
without the need to have the real hardware.

All developed code and interfaces will soon be available as open source to the
Player/Stage system for both the robotics and ubicomp communities.

References

1. Kidd, C.D., Orr, R., Abowd, G.D., Atkeson, C.G., Essa, I.A., MacIntyre, B., Mynatt, E.D.,
Starner, T., Newstetter, W.: The aware home: A living laboratory for ubiquitous computing
research. In: CoBuild ’99: Proceedings of the Second International Workshop on Cooperative
Buildings, Integrating Information, Organization, and Architecture, London, UK, Springer-
Verlag (1999) 191–198

2. Schilit, B.N., LaMarca, A., Borriello, G., Griswold, W.G., McDonald, D., Lazowska, E., Bal-
achandran, A., Hong, J., Iverson, V.: Challenge: ubiquitous location-aware computing and the
"place lab" initiative. In: WMASH ’03: Proceedings of the 1st ACM international workshop
on Wireless mobile applications and services on WLAN hotspots, New York, NY, USA, ACM
Press (2003) 29–35

3. Collett, T.H., MacDonald, B.A., Gerkey, B.P.: Player 2.0: Toward a Practical Robot Program-
ming Framework. In: Proceedings of the Australasian Conference on Robotics and Automa-
tion (ACRA 2005). (2005)

4. Müller, A., Beetz, M.: Designing and Implementing a Plan Library for a Simulated Household
Robot. In: AAAI 06 Workshop on Cognitive Robotics, 2006. (2006)

5. Greenberg, S.: Physical user interfaces: what they are and how to build them. In: UIST ’04:
Proceedings of the 17th annual ACM symposium on User interface software and technology,
New York, NY, USA, ACM Press (2004) 161–161

6. Klemmer, S.R., Li, J., Lin, J., Landay, J.A.: Papier-mâché: toolkit support for tangible input.
In: CHI ’04: Proceedings of the SIGCHI conference on Human factors in computing systems,
New York, NY, USA, ACM Press (2004) 399–406

7. Intille, S.S., Larson, K., Tapia, E.M., Beaudin, J., Kaushik, P., Nawyn, J., Rockinson, R.:
Using a live-in laboratory for ubiquitous computing research. In: Pervasive. (2006) 349–365

6


