Player/Stage as Middleware for Ubiquitous Computing

Radu Bogdan Rusu, Alexis Maldonado,

Michael Beetz
University of Technology, Munich (TUM)
Boltzmannstrasse 3
85748 Garching, Germany

{rusu, maldonad, beetz}@cs.tum.edu

ABSTRACT

We propose Player/Stage, a well-known platform widely
used in robotics, as middleware for ubiquitous computing.
Player/Stage provides uniform interfaces to sensors and
actuators and allows the computational matching of input
and output. Player/Stage exactly addresses the issues of
dealing with heterogeneous hardware but currently only
with a focus towards robotics. We show how to integrate
ubiquitous computing platforms into Player/Stage and pro-
pose Player/Stage as middleware for ubiquitous computing
projects.

Keywords

Middleware, Sensors, Actuators, Simulation

1. INTRODUCTION

The effective development and deployment of comprehen-
sive and heterogenous ubiquitous computing applications,
such as sensor-equipped living environments or cognitive fac-
tories is hindered by the lack of a comprehensive middleware
infrastructure: interfaces to sensors are company specific and
sometimes even product specific. Typically, these interfaces
also do not support the development of robust systems that
can support sensor data fusion.

Dealing with uncertainty and many sensor and actuator
systems is nothing special to ubiquitous computing as it
has been a major issue in robotics as well. But, in contrast,
the autonomous robotics community has developed and used
software infrastructures and libraries that succesfully solved
these issues.

We therefore propose Player/Stage, a middleware com-
monly used as a defacto standard in robotics, as middle-
ware platform for ubiquitous computing. It offers many fea-
tures that we need in ubicomp as well: a common uniform
interface for accessing a great variety of sensors (accelera-
tion, cameras, etc.) and controlling actuators (like switches
or displays) and a way to exchange data between them via
computational interfaces. Player/Stage also offers the possi-
bility to use ’virtual‘ hardware, e.g. have a virtual location
system at hand for developing context-aware applications
without the need to spend hundreds or thousands of dollars
for a ’real‘ location system.

The contribution of this work is as follows: first, we present
related work on infrastructures for ubiquitous computing.
Then we shortly present the key points of the Player/Stage
middleware for robotics. We finally show how several ubiq-
uitous computing platforms (Cparts, Particles, Mica2 and
Mica2dots, M1/M1-mini and M300 RFID readers), as well
as how automatic data processing algorithms can be easily

Matthias Kranz, Lorenz Mdsenlechner,
Paul Holleis, Albrecht Schmidt
Research Group Embedded Interaction,
University of Munich
Amalienstrasse 17
80333 Munich, Germany

{matthias, lorenz, paul,
albrecht}@hcilab.org

integrated into the Player/Stage middleware.

2. RELATED WORK

In the last few years, several middleware systems and in-
frastructures have been proposed for ubiquitous computing.
From investigating selected recently proposed middleware
systems and architectures, we have extracted and compiled
a list of desired functional aspects for a ubiquitous comput-
ing middleware. Due to space restrictions, we cannot go into
details for each system. The following is a list of the projects
we examined together with references for readers who wish
to learn more about them:
iROS [1]

Phidgets [3]
Equip Component Toolkit (ECT) [4]

Real World Interfaces [6]
Papier-Maché [5]

The following list summarizes the list of desired properties
for such an infrastructure:
e supportability
— explicit interaction;
— implicit interaction [8];
e adaptability
— to roaming and nomadic devices;
— to integrate new hardware easily;
< to learn from events;
— to new (operating system) platforms and devices.
failure-tolerance and robustness
support data exchange via APIs and interfaces with

< internal components;
— external systems.

e support privacy and security, e.g. by allowing

— secure data exchange (if needed between compo-
nents);
— private and public events and messages.

3. PLAYER/STAGE - A MIDDLEWARE
FOR ROBOTICS

The work on the Player/Stage project started at the Uni-
versity of Southern California in the late ninetees and moved
to Sourceforge in 2001. Since then, the user base has grown
considerably in size, and currently the pool of project devel-
opers consists of people working at universities and research
institutions all around the world. Because of its highly active
development, the Player/Stage project became a de facto
standard in the open source robotics community [2].

The project has two major components:



e Player, a distributed device repository server for
robots, sensors and actuators, divided into several
libraries for enhanced flexibility;

e Stage, and Gazebo, a 2-D respectively 3-D simulator,
which provide the user with tools that support research
into multi-agent autonomous systems as well as high
fidelity robot simulations.

A device, as defined by Player, is composed of a driver
and an interface. Every interface is well-defined, therefore
all a driver needs to do is pack the data in the appropriate
interface format and provide it to the client. Within the
Player concept, a driver can be many things:

e code that connects and communicates to a physical
device;

e an algorithm that receives data from another device,
processes it, then pushes it back through the same
channel;

e a "virtual driver", which can create data when needed.

Due to the standardized interfaces, and because of the fact
that Player/Stage was designed to be language and platform
(POSIX) independent, various client-side utilities exist for
a large variety of programming languages: C, C++, Java,
Python, LISP, Ada, Octave, Ruby, Scheme, etc.

Any number of clients can connect to the Player server
and access data, send commands or request configuration
changes to an existing device in the repository.

Some of the key features of the project are: platform, pro-
gramming languange, and transport protocol independence;
enhanced scalability; open source; standardized communi-
cation; high modularity as well as a promoter of software
reusability.

4. UBIQUITOUS COMPUTING PLAT-
FORMS AND PLAYER/STAGE

To better illustrate the advantages of using Player/Stage
as a standard ubicomp platform, we will show that:

e binding of standard ubicomp platforms to Player/Stage
is easy and feasible;

e an ubicomp context can already make use of the ex-
isting support for several devices (cameras, ultrasonic
sensors, lasers, etc) and reuse the code/algorithms al-
ready implemented in Player/Stage, due to the exist-
ing standardized, uniform interfaces.

Our work concentrated on adding support for various
ubiquitous devices for Player/Stage as well as building
software algorithms that could be used in feature extraction
and machine learning applications.

We have already added support for a wide variety of de-
vices, such as:

e Wireless Sensor Nodes - Cparts and Particles from
Particle Computers, Mica2 and Mica2dot from Xbow;

e RFID readers - Skeytek M1/M1-mini, Inside M300.

We defined several standard interfaces (wsn, rfid, features)
so that different devices can be accessed in the same way by
the client, without the need to write additional code. This
is a very powerful concept in Player/Stage, which we think
will attract the ubicomp community.

As an example, one can scatter a number of different wire-
less sensor nodes (mica2 and particles for instance), yet use
the same code to access the data or to configure the nodes.

An example of accessing the wireless sensor data using
Javaclient[7] follows:

WSNInterface wsn =

client.requestInterface WSN (index, accesscode);
PlayerWSNData datapacket = wsn.getData ();
float accelX = datapacket.getAccelX ();

As mentioned above, we have also developed drivers that
act as virtual gateways between the raw data received from
the sensors and various different more useful interpretations
of it. With that in mind, we defined a new interface called
features and wrote a driver that can automatically extract
data features using PCA, ICA, Wavelet and Fourier tech-
niques. Besides that, the driver can also calculate some of
the classical features such as mean, variance, energy, RMS,
correlation, kurtosis, etc, from both raw and filtered data.

5. ACKNOWLEDGMENTS

The work has been jointly conducted by the research
project Embedded Interaction ("Eingebettete Interaktion’)
which was funded by the DFG ("Deutsche Forschungsge-
meinschaft’) and the University of Technology, Munich.

6. REFERENCES

[1] J. Borchers, M. Ringel, J. Tyler, and A. Fox. Stanford
interactive workspaces: A framework for physical and
graphical user interface prototyping. volume 9, pages
64-69, December 2002.

[2] T. H. Collett, B. A. MacDonald, and B. P. Gerkey.
Player 2.0: Toward a Practical Robot Programming
Framework. In Proceedings of the Australasian
Conference on Robotics and Automation (ACRA 2005),
December 2005.

[3] S. Greenberg. Physical user interfaces: what they are
and how to build them. In UIST °04: Proceedings of the
17th annual ACM symposium on User interface
software and technology, pages 161-161, New York, NY,
USA, 2004. ACM Press.

[4] C. Greenhalgh, H. J. Izadi S., Mathrick J., and
I. Taylor. ECT: A Toolkit to Support Rapid
Construction of Ubicomp Environments. In Conference
on Ubiquitous Computing (Workshop on System
Support for Ubiquitous Computing UbiSys04), 2004.

[5] S. R. Klemmer, J. Li, J. Lin, and J. A. Landay.
Papier-méché: toolkit support for tangible input. In
CHI °0/4: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 399-406,
New York, NY, USA, 2004. ACM Press.

[6] S. Mccrickard, D. Bussert, and D. Wirghton. A toolkit
for the construction of real world interfaces. In In
Proceedings of the ACM Southeast Conference (ACMSE
'03), pages 118-123, March 2003.

[7] R. B. Rusu, G. Lazea, R. Robotin, and C. Marcu.
Towards Open Architectures for Mobile Robots:
ZeeRO. In Proceedings of the Automation, Quality and
Testing, and Robotics International Conference (AQTR
2006), May 2006.

[8] A. Schmidt. Implicit human computer interaction
through context. Personal and Ubiquitous Computing,
4(2/3), 2000.



