
Prototyping Smart Objects for Ubiquitous
Computing

Matthias Kranz Albrecht Schmidt
{matthias, albrecht}@hcilab.org

Research Group Embedded Interaction
University of Munich

Amalienstrasse 17, 80333 Munich, Germany

Abstract. Technology enabling us to augment physical objects with
electronics and thereby making them ’smart’ is readily available. What
could keep us from building smart objects? This paper keeps in perspec-
tive current development and technologies with a focus on ubiquitous
computing appliances. The primary contribution of this work is the iden-
tification of issues related to prototyping hard- and software as well as to
finally building these devices. Guidelines for development are presented
and an outlook for future research is given.

1 Introduction
Never it has been easier to build and deploy ’smart’ artifacts or ’smart’ appli-
ances out of the labs to our everyday environment. The required technology is
readily available in pieces and in the necessary size and at low costs. But has it
really become that easy to build smart objects? This paper keeps this in perspec-
tive and presents current issues related with the development of smart objects
regarding hard- and software.

The paper is structured as follows. Section 2 discusses current trends enabling
advances in ubiquitous computing relevant to the development of smart objects.
Issues related to prototyping appliances are identified and discussed. In section
3 current platforms for building smart object systems are presented. Common
issues related to development of embedded systems are presented. In section 4
an outlook on future development is given.

2 Challenges with Prototyping
2.1 Enabling Technologies
Computers have become ubiquitous in our life and the urge of modern people for
pervasive interaction has enabled new industrial sectors like mobile communica-
tion. There are several trends in computer science and electronics that foster or
even enforce ubiquitous computing. These are namely:

Computing Power: Computing power still increases according to Moore’s
Law[1], although a potential end is in sight. More and more components
are integrated in less space. Energy consumption is further reduced,
allowing longer operation with less power and heat, e.g. with nanoWatt
microcontrollers.

Storage and Memory: Size and reliability of storage solutions have dramati-
cally increased – accompanied with a dramatic decrease in price.

Connectivity: Miscellaneous devices can be easily (?) connected to each other
or to a larger network by various networking technologies, e.g. WLAN, Zig-
Bee, Bluetooth, IrDA, GPRS, UMTS, Connectivity is available nearly
everywhere at low and decreasing costs.

Sensors: Sensors enable systems and devices to perceive their environment and
allow, by processing the gathered information, the (hopefully intelligent)
reaction to the perceived facts [2]. Also, prices decrease and accuracy and
reliability increase.

Actuators: Reacting to changes in the environment or the context is essen-
tial for giving meaningful and appropriate feedback in place. The variety of
available actors – starting with simple LEDs and ranging to robotic devices
– is gigantic. The challenge is to select an appropriate actor available for the
desired output.

Display Technology: Displays evolved from monochrome, small-size, much
energy-consuming devices to large, bright and light plasma or TFT screens.
Large public displays based on projection or RGB-LED technology inhabit
our environment. But also small and flexible screens e.g. for e-books or wear-
able computing appliances are available.

Upcoming devices like PDAs (personal digital assistant), MDAs (mobile digital
assistant) or UMTS smart phones provide pervasive computing power together
with the required connectivity and a rich set of high-bandwidth interface tech-
nologies (WLAN, Bluetooth, ZigBee, IrDA, . . .). ’By removing the restriction of
place, people world-wide have found new and rewarding ways of connecting with
others – both privately and for business’ [3], page V.

2.2 Starting development
When starting to develop appliances, we in first place speak of interactive de-
vices. The probably most obvious way is to start with existing (digital) devices.
These devices are already (hopefully) well-designed and have their well-known
functionality and affordance [4]. The researcher can concentrate on the addi-
tional functionality that is to be integrated and does not have to design the
device as a whole from scratch. The prototyping of completely new ubicomp
devices and smart objects is a hard business, as stated in [5]. The problem is
’the sheer difficulty of developing and combining physical devices and interfac-
ing them to conventional programming languages’. We discovered the following
problems with the development of new smart objects:

– difficulty of wiring electronics and electrical components together to a work-
ing whole thing

– problem of accessing functionality of commercially available devices (e.g.
unpublished APIs)

– wrong level of abstraction of readily available devices (too high-level oriented,
low-level functionality is shielded and not available to the programmer)

– cost of commercial/scientific devices make it impossible to access these de-
vices in early stages of work, prohibiting to test developed software with real
devices

– parallel developing and debugging hardware, software and protocols which
makes it harder to locate and fix problems

So, ’building systems with physical sensors is no easy task. You need a solder-
ing iron, plenty of experience in electronics, and even more patience’ ([6], page
96). Especially patience.

2.3 Prototyping
There are several ways of (rapid) prototyping related to standard software and
WWW usability. But there is up to now only little work on the prototyping
of smart objects though parts of the known methodologies can be reused. The
following well-known items and their descriptions have been collected at [7].

paper-prototyping a paper sketch of the user interface with enough detail to
make design decisions and usability evaluations, whether through a usability
inspection, a focus group, or a simple user test.

mock-up prototyping usually referring to low-fidelity prototypes, such as pa-
per illustrations, screenshots, or simple configurations of screens with limited
interaction

wizard of Oz prototyping a prototype that only works by having someone
behind-the-scenes who is pulling the levers and flipping the switches. The
wizard of oz technique in user testing has a user interacting with an interface
without knowing that the responses are being generated by a human, not
a computer. This allows testing of some difficult interface concepts before a
system is fully working.

video prototyping a technique for visualizing the interactive behavior of a sys-
tem using video animation. Each frame of the video is created by videotaping
a brief instance in the use of a system. Each frame is typically constructed on
paper with icons, pointers, and other widgets simulated by moving cut-out
representations of them.

Software prototyping is simpler than hardware prototyping. There are so-
phisticated tools available, e.g. HyperCard and other RAD (Rapid Application
Development) tools. For hardware prototyping there are experimental platforms
available for rapid hardware prototyping, e.g. Smart-Its [8] and Particles [9].

Prototyping can, amongst others, be classified according to how the prototype
is built. The following approaches are presented in [6]:

– throw-away prototypes: the prototype is built and tested and thrown away
after evaluation

– incremental prototypes: the final system is partitioned into smaller systems
which are built and integrated step by step towards the final version

– evolutionary prototypes: each prototype serves as basis for the next genera-
tion of prototypes

It is essentially important when developing new smart objects and interaction
mechanisms, that there exists a graspable and tangible demonstrator of the right
form factor and no substitute.

There are countless studies on what people would do if something was possible
or available. But results of these ’soft’ studies are not transferrable 1:1 (if at all)
to reality. The danger of this approach is that this leads to ’StarTrek’ devices:
people tell what they may have seen or read about in science fiction and how
they liked it. Only real prototypes can be subject to formal evaluation.

Evaluation methods (taken from [6]) suitable are for example:

– expert evaluation
– cognitive walk-through
– heuristic evaluation, respecting Nielsen’s ten heuristics [10]

2.4 Prototypes
To overcome the lack of suitable devices, several strategies could be used:

– prototype realization using a standard PC
– prototype realization using a mobile phone/PDA
– prototype by hacking of commercial off the shelf (COTS) devices
– prototype as self contained device

Instead of using a custom device, a standard PDA or any other system avail-
able (even sometimes a desktop PC or another COTS component could be used.
But there are also disadvantages that have to be considered when using ’alter-
native’ hardware than the desired or needed one. The user experience in front of
a bright, large and high-resolution CRT Monitor is completely different from a
small, dark and low-resolution monitor of a mobile device. This holds also true
for the strain put on the eyes of the user. If fatigue is an issue, this has to be
considered. The introduced changes when substitutes are being used have to be
taken into account before conclusions can be drawn.

When considering using an existing device as basis for research, there basi-
cally are three options how to get to a prototype:

restricting the use of the existing device This concept was for example
used in a public exhibit at the Cybernarium. The selection of the viewpoint
in the ’Aula Regia’ was done with a small number of buttons. These buttons
where on a layout of the floor plan on top of a box. Inside the box was a
standard keyboard - not visible to the user. For the user it appeared as a
normal floor plan with several buttons [11].

re-packaging the existing device For example, a Compaq IPAQ was pro-
vided with a different housing to make it look like a completely different
device. The screen was restricted and only visible through a round hole in
the new housing [12].

hacking of devices Adding new hardware, especially sensors and actuators to
existing devices is an easy way of extending their functionality and of ob-
taining novel devices [13].

The decision of which option to take depends on the task. A prototype with
the affordances and form factor of the envisioned device surely is favorable has
to be favored to alternatives.

2.5 Developing Ubiquitous Computing Appliances
’The traditional computer is a glass box – all you can do is press buttons and see
the effect. Ubiquitous computing and augmented reality systems break this glass
box by linking the real world with the electronic worlds’ [6].

We strongly argue that it is crucial to have something the users can take
in their own hands, explore it themselves (guided or unguided) and try out
themselves in real life. The device may be buggy and crude. The user is able
to deal with these shortcomings. However, the form factor is important. The
experience generated is of great value.

When having a device or artifact – however it may look like – it has certain
affordances [4], affecting how people use it. The physicality of the artifact makes
people think over it when really holding it, handling it and using it. This often
leads to new ideas and suggestions for improvements.

The key point is the engagement of the users with the device that makes
them think more about it than without the device. The developer often is not
able to take a step back and get another view on his artifact. Sometimes only
outsiders may give new directions to the development and prevent bad designs as
e.g. listed in [14] (e.g. bad door or light switch designs). A participatory design
process involving users improves the overall design significantly, but it can not
substitute formal evaluation methods of which some are listed in 2.3.

To conclude, we believe that the development of ubicomp devices can only
successfully be done with real prototypes and real users.

3 Platforms for Ubiquitous Computing
In section 1, fundamentals and requirements for designing and developing ubiq-
uitous computing soft- and hardware were discussed. In this section various
platforms for ubiquitous computing, especially suitable for prototyping new ap-
pliances, are presented.

3.1 Platform Discussion
When talking about platforms, one has to distinguish between platforms ded-
icated especially as platforms for sensor networks. and those for appliance or
smart artifact development. The following citation describes the differences well:

’The emphasis is therefore not on routing and sensor data diffusion as in-
vestigated in large-scale wireless sensor networks, but on fast network discovery
and exchange of context (as opposed to low-level sensor data)’ [8].

The characteristic of sensor nodes is that each node is (mostly) identical to
the other nodes and has equal weight (in the sense of the importance of their
data). Basically they all have the same properties and the same sensors. Nodes
for smart appliances are at most similar, but not equal or identical at all and
change from appliance to appliance often significantly. Also, from an application
point of view, when using sensor nodes, one is interested in pure sensor data.
When looking at appliances, one is interested in context.

There are different levels of abstraction.

high level: frameworks, methods
medium level: toolkits, IDEs
low level: pure programming languages like ASM, C, . . .

When building devices with embedded systems, it is important to not have
to start from scratch over and over again and thereby lose knowledge gathered
during development. It sure is important to have some knowledge of the basic way
of operation and maybe even the protocols used for e.g. RF data transmission,
but this work has been done (several times) and there is no big prize to win (if at
all) for doing it again. So the developer of ubicomp appliances shall also have a
glance at what level of software is available for his preferred devices and choose
the appropriate one for the task at hand.

The following Table 1 lists several platforms for prototyping smart objects. This
is far from being complete, but mentions some of the most important platforms
for ubiquitous computing hardware together with their technical characteristics
and the programming languages available for them.

Platform BTNodes Motes SoapBox Smart-Its Particles
Properties
µController ATMega128L ATMega128L 8bit PIC 16 PIC 18
Flash 128kB 128kB unk. 128 kB 128 kB
RAM 4 kB 4 kB unk. 4 kB 4 kB
RF Speed 76.8 kbps 250 kbps 10 kbps 125 kbps 125 kbps
RF Range 15 m 15 m 15 m 15 m 30 m
RF Band 2400 868 - 8701 868.3 MHz 868 MHz 868.35/315

MHz
Other Buses SPI, I2C RSR232,

parallel
RS232 RS232,SPI,

parallel, I2C
RS232,

SPI,parallel,
I2C

Other Comm.
Capabilities

RS232,
Bluetooth

Ethernet,
ZigBee

- IrDA,
Bluetooth

Bluetooth,
ZigBee,

Ethernet (via
USB/X-
Bridge)

Digital I/O unk. unk. yes yes yes
Analog I/O yes yes yes yes yes
RTC yes yes yes yes yes
Supply Voltage 0.5-3.3 V 2.7 - 3.3 V 1.5 - 28 V 3V 0.9 - 3.3 V
Size
(widhtxlength)

60x40 mm matchbox matchbox matchbox 45x18 mm

Prog.
Languages

C NESC (C
dialect)

C C C

Table 1. Overview: Platforms for Ubiquitous Computing

BTNodes: BTNodes [15][16] are a ’hardware and software platform for rapid
prototyping of augmented sensor networks systems, which may be temporarily
connected to a backend infrastructure for data storage and user interaction,
and which may also make use of actuators or devices with rich computing
resources that perform complex signal processing tasks’ [15].

Motes: Motes were originally developed at Berkeley and are now commercial-
ized by [17] and [18]. ’Crossbow’s wireless sensor networking platform enables
powerful, wireless, and automated data collection and monitoring systems’
[17]. Motes are supposed to form ’wireless sensors networks for large-scale
commercial use’ [17].

SoapBox: ’It was developed as a research tool as well as to be utilized as a
generic prototype for experimenting with product ideas and developing pro-
totypes for them. . . . As a configurable platform, SoapBox offers ultra low
power implementation of wireless low-bit-rate devices such as small sensors,
tags and actuators’ [19].

Smart-Its: Smart-Its [8] is an open embedded hardware platform with the goal
of providing ’sensing, perception, computation, and communication’ [8] to
everyday objects.

TecO Smart-Its Particles: Particles [9] can be seen as successors to Smart-
Its. They are designed to be smaller and to consume much less power so they

0 and/or 902 - 928, 433 - 434, 313 - 316, 2400 - 2483 MHz, depending on the basic
Mote

can be deployed and remain in action for a long time (e.g. several weeks)
without maintenance which becomes more important when conducting real
life studies over a longer time period. The ’Particle Computer is a platform
for rapid prototyping of Ubiquitous and Pervasive Computing environments,
for Ad-Hoc (Sensor) Networks, Wearable Computers, Home Automation and
Ambient Intelligence Environments’[9].

3.2 Building Appliances with Embedded Systems
The platforms described above enable the development of smart devices and
smart artifacts, but there are of course also special problems associated with
embedded systems:

platform restrictions limited amount of RAM and ROM as well for stack and
code

debugging no highly sophisticated tools and development environments, trac-
ing of the program execution difficult or impossible

development level of the platform missing or only unsuitable protocols
available which forces to spend noteworthy amount of development time in
porting existing code for other platforms and requires substantial changes

difficulty of changing the hardware sometimes a different chip set and
hardware parts are desirable or necessary. This often is impossible with the
highly integrated nature of embedded systems

Knowledge on the peculiarities of the platform of choice has to be gath-
ered and the difficulties have to be overcome to successfully develop ubiquitous
computing hardware with the desired form factor. Greenberg in [5] also talks
about the problems with custom hardware development when they talk about
’the sheer difficulty of developing and combining physical devices and interfacing
them to conventional programming languages’.

4 Conclusion - From Smart-Its to Particles and Beyond
Is it really the single device or smart object that is in the center of interest? The
focus recently has shifted from building only single devices to complete appli-
ances. But this only can be done with real prototypes. The existing hardware
platforms, though each having some problems, provide a solid basis for building
very interesting appliances.

In many projects, e.g. the Smart-Its project [20], there has been much valu-
able ’demonstrator building’ and less focus on middle-ware and APIs. So the
amount of existing higher level software available is still limited. This currently
is a serious issue when researchers try to build new systems that are not limited
to just one prototype or device. It is a challenging task to design and develop
more generic and higher level toolkits and APIs for still growing field of re-
search. Also systems are needed that integrate more than one ubicomp platform
to enable researchers to combine the benefits of each platform.

Currently, we are just at the edge of these developments and have instruments
for building sophisticated prototypes and with them, smart objects.

5 Acknowledgments
The work has been conducted in the context of the research project Embedded
Interaction (’Eingebettete Interaktion’) and was funded by the DFG (’Deutsche
Forschungsgemeinschaft’).

References

1. Moore, G.E.: Cramming more components onto integrated circuits. Electronics
38 (1965) 114–117

2. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd edition
edn. Prentice-Hall, Englewood Cliffs, NJ (2003)

3. Hansmann, U., Merk, L., Nicklous, M.S., Stober, T.: Pervasive Computing.
Springer (2003)

4. Gibson, J.: The theory of affordances. In: Perceiving, Acting, and Knowing,
Lawrence Erlbaum Associates (1977)

5. Greenberg, S., Fitchett, C.: Phidgets: easy development of physical interfaces
through physical widgets. In: Proceedings of the 14th annual ACM symposium on
User interface software and technology (UIST), ACM Press (2001) 209–218

6. Dix, A., Finley, J., Abowd, G., Beale, R.: Human-computer interaction (3nd ed.).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (2004)

7. Design, D.B.: Usability first. http://www.usabilityfirst.com/glossary/main.
cgi (2005)

8. Beigl, M., Gellersen, H.W.: Smart-Its: An Embedded Platform for Smart Objects.
In: In Proc. Smart Objects Conference (SOC 2003). (2003)

9. Decker, C., Krohn, A., Beigl, M., Zimmer, T.: The particle computer system.
In: IPSN Track on Sensor Platform, Tools and Design Methods for Networked
Embedded Systems (SPOTS), Proceedings of the ACM/IEEE Fourth International
Conference on Information Processing in Sensor Networks. (2005)

10. Nielsen, J.: Heuristic evaluation. Usability inspection methods (1994) 25–62
11. Siemens Forum (AR): Demonstration Aula Regia on the CybernariumDays. http:

//www.cybernarium.de/download/CDaysMuenchenKatalog.pdf (2004)
12. Prante, T., Röcker, C., Streitz, N., Stenzel, R., Magerkurth, C., van Alphen, D.,

Plewe, D.: Hello. Wall - Beyond Ambient Displays. Video and Adjunct Proceedings
of UbiComp 2003 (2003)

13. Andersen, K.: Hacking wireless game-pads. Toolkit Support for Interaction in the
Physical World on Pervasive 2004 (2003)

14. Norman, D.: The Design of Everyday Things. Doubleday (1990) originally pub-
lished by Basic Books in 1988 as ’The Pscyhology of Everyday Things’.

15. Beutel, J., Kasten, O., Mattern, F., Römer, K., Siegemund, F., Thiele, L.: Pro-
totyping Wireless Sensor Network Applications with BTnodes. In: 1st Euro-
pean Workshop on Wireless Sensor Networks (EWSN), Berlin, Germany, Springer-
Verlag (2004) 323–338

16. BTnode Project: BTnodes - A Distributed Environment for Prototyping Ad Hoc
Networks. http://www.btnode.ethz.ch (2004)

17. Crossbow: Motes. http://www.xbow.com/ (2005)
18. Intel: Motes. http://www.intel.com/research/exploratory/motes.htm (2004)
19. Tuulari, E., Ylisaukko-oja, A.: Soapbox: A platform for ubiquitous computing

research and applications. In: Proceedings of the First International Conference
on Pervasive Computing (PERVASIVE), London, UK, Springer-Verlag (2002) 125–
138

20. Gellersen, H.W., Kortuem, G., Beigl, M., Schmidt, A.: Physical Prototyping with
Smart-Its. IEEE Pervasive Computing Magazine 3 (2004) 74–82

